
The Linux Kernel Hackers� Guide

Copyright c� ��������� Michael K� Johnson

Alpha version ���

A hodgepodge collection of information� speculation� and ramblings about the Linux kernel�

This is only a draft� Please mail any corrections� ampli�cations� suggestions� etc� to Michael K�

Johnson� johnsonm�nigel�vnet�net� Editor�

Editorial comments look like this� �This is an editorial comment�� I invite answers to

any questions in these comments� The more help I get on these� the fewer of these ugly com�

ments newer versions of the guide will have� Some of these are merely large notices to myself

to �nish some task I started� If you would like to help by working on a section that has notes

like this� please contact me to see what help I need�

This work is currently rather fragmented� and will remain in that state until most of the sections

have been written� so that revision combining those sections can be done intelligently� Substan�

tial revision to occur at that time should address the problems with unnecessarily duplicated

information and lack of structure� and make the guide easier to follow and more succinct�

i

However� the section on device drivers should be helpful to some� Other sections are mostly a

little out of date and in need of revision anyway� Please bear with me� or better yet� help�

ii

Copyright c� ����	 ���
	 ����	 ���� Michael K� Johnson

��� Howell Street	 Apt� �C	 Chapel Hill	 North Carolina ���������

johnsonm�nigel�vnet�net

The Linux Kernel Hackers� Guide may be reproduced and distributed in whole or in part	

subject to the following conditions�

�� The copyright notice above and this permission notice must be preserved complete on

all complete or partial copies�

�� Any translation or derivative work of The Linux Kernel Hackers� Guide must be

approved by the author in writing before distribution�

�� If you distribute The Linux Kernel Hackers� Guide in part	 instructions for obtaining

the complete version of The Linux Kernel Hackers� Guide must be included	 and a

means for obtaining a complete version provided�

� Small portions may be reproduced as illustrations for reviews or quotes in other works

without this permission notice	 if proper citation is given�

�� The GNU General Public License referenced below may be reproduced under the

conditions given within it�

�� Several sections of this document are held under separate copyright� When these

sections are covered by a di�erent copyright	 the seperate copyright is noted� If you

distribute The Linux Kernel Hackers� Guide in part� and that part is� in whole�

held under a seperate copyright� the conditions of that copyright apply�

Exceptions to these rules may be granted for academic purposes� Write to Michael K� John

son	 at the above address	 or email johnsonm�nigel�vnet�net	 and ask� These restrictions

are here to protect the authors	 not to restrict you as educators and learners�

All source code in The Linux Kernel Hackers� Guide is placed under the GNU General

Public License� See Appendix �� for a

copy of the GNU �GPL�� Source code for all full example programs is available online

as tsx����mit�edu��pub�linux�docs�hacker�source�tar�Z and a copy of the GPL is

available in that �le as COPYING� �O�K�� so it will be available when there is some

source to distribute� � � �

iii

UNIX is a trademark of X�Open

MSDOS is a trademark of Microsoft Corporation�

Linux is not a trademark	 and has no connection to UNIXTM or X�Open�

If any trademarks have been unintentionally unacknowledged	 please inform the editor	

Michael K� Johnson	 ��� Howell Street	 Apt� �C	 Chapel Hill	 North Carolina ���������	

email johnsonm�nigel�vnet�net�

iv

Introduction

The The Linux Kernel Hackers� Guide is inspired by all of us �kernel hacker wannabees�

who just did not know enough about unix systems to hack the Linux kernel when it �rst

came out	 and had to learn slowly� This guide is designed to help you get up to speed on the

concepts that are not intuitively obvious	 and to document the internal structures of Linux

so that you don�t have to read the whole kernel source to �gure out what is happening with

one variable	 or to discover the purpose of one function call�

Why Linux� Well	 Linux is the �rst free unix clone for the
�� to be freely available�

It is a complete rewrite	 and has been kept small	 so it does not have a lot of the time

honored baggage that other free operating systems �like
��BSD� carry	 and so is easier to

understand and modify�

Unix has been around for over twenty years	 but only in the last few years have mi

crocomputers become powerful enough to run a modern protected	 multiuser	 multitasking

operating system� Furthermore	 unix implementations have not been free� Because of this	

very little free documentation has been written	 at least for the kernel internals�

Unix	 though simple at �rst	 has grown more and more appendages	 and has become a

very complex system	 which only �wizards� understand� With Linux	 however	 we have a

chance to change this	 for a few reasons�

� Linux has a simple kernel	 with wellstructured interfaces�

� One person	 Linus Torvalds	 has control of what code is added to Linux	 and he does

this work gratis� This means that random pieces of code are not forced into the kernel

by some company�s politics	 and the kernel interfaces stay relatively clean�

� The source is free	 so many people can study it and learn to understand it	 becoming

�wizards� in their own right	 and eventually contribute code to the e�ort�

It is our hope that this book will help the nascent kernel hacker learn how to hack the

Linux kernel	 by giving an understanding of how the kernel is structured�

v

Thanks to� � �

Linus Torvalds� of course	 for starting this whole time sink	 and for gently providing

explanations whenever necessary� He has done a wonderful job of keeping the kernel

source code understandable and neat� I can�t imagine having learned so much in the

past few years without Linux�

Krishna Balasubramanian and Douglas Johnson� for writing much of the section on

memory management	 and helping with the rest�

Stanley Scalsky� for helping document the system call interface�

Rik Faith� for writing the section on how to write a SCSI device driver�

Robert Baruch� for the review of Writing UNIX Device Drivers and for his help with

the section on writing device drivers�

Linux Journal� for providing me with a Linuxrelated job	 and for allowing me to do work

on the KHG on their time�

Kim Johnson� my wife� for tolerating and encouraging me even when I spend my time

on crazy stu� like Linux�

Copyright Acknowledgements�

Linux Memory Management� The original version of this document is copy

right c� ���
 Krishna Balasubramanian� Some changes copyright c� ���
 Michael K�

Johnson and Douglas R� Johnson�

How System Calls Work� The original version of this document is copyright c� ���

Stanley Scalsky� Some changes copyright c� ���
 Michael K� Johnson

Writing a SCSI Device Driver The original version of this document is copy

right c� ���
 Rickard E� Faith� Some modi�cations are copyright c� ���
 Michael K�

Johnson� The author has approved the inclusion of this material	 despite the slightly

more restrictive copyright on this whole document� The original copyright restrictions	

which still apply to any work derived solely from this work� are�

vi

Copyright c� ���
 Rickard E� Faith �faith�cs�unc�edu�� All rights re

served� Permission is granted to make and distribute verbatim copies of this

paper provided the copyright notice and this permission notice are preserved

on all copies�

If you wish to make a derived work	 please start from the original document� To do

so	 please contact Rickard E� Faith	 faith�cs�unc�edu� The original is available for

anonymous ftp as ftp�cs�unc�edu��pub�faith�papers�scsi�paper�tar�gz�

Contents

� Before You Begin� � � �

��� Typographical Conventions �

��� Assumptions �

��
 Hacking Wisdom �

� Device Drivers 	

��� What is a Device Driver� �

��� Userspace device drivers �

����� Example� vgalib �

����� Example� mouse conversion �

��
 Device Driver Basics �

��
�� Namespace �

��
�� Allocating memory �

��
�
 Character vs� block devices ��

��
�� Interrupts vs� Polling ��

��
�� The sleepwakeup mechanism ��

��
�� The VFS �

��� Character Device Drivers ��

����� Initialization ��

����� Interrupts vs� Polling ��

����
 TTY drivers ��

vii

CONTENTS viii

��� Block Device Drivers ��

����� Initialization ��

����� The Bu�er Cache ��

����
 The Strategy Routine ��

����� Example Drivers ��

��� Supporting Functions ��

��� Writing a SCSI Device Driver ��

����� Why You Want to Write a SCSI Driver � � � � � � � � � � � � � � � � ��

����� What is SCSI� �

����
 SCSI Commands ��

����� Getting Started ��

����� Before You Begin� Gathering Tools ��

����� The Linux SCSI Interface ��

����� The Scsi Host Structure ��

����� The Scsi Cmnd Structure �

��� Acknowledgements ��

��� Network Device Drivers ��

 The �proc �lesystem �

��� �proc Directories and Files ��

��� Structure of the �proc �lesystem ��

��
 Programming the �proc �lesystem ��

� The Linux scheduler ��

�� The code ��

	 How System Calls Work ��

��� What Does the
�� Provide� ��

��� How Linux Uses Interrupts and Exceptions � � � � � � � � � � � � � � � � � � ��

��
 How Linux Initializes the system call vectors � � � � � � � � � � � � � � � � � �

CONTENTS ix

��� How to Add Your Own System Calls ��

� Linux Memory Management ��

��� Overview ��

��� Physical memory ��

��
 A user process� view of memory ��

��� Memory Management data in the process table � � � � � � � � � � � � � � � � ���

��� Memory initialization ���

����� Processes and the Memory Manager � � � � � � � � � � � � � � � � � � ���

��� Acquiring and Freeing Memory� Paging Policy � � � � � � � � � � � � � � � � ��

��� The page fault handlers ���

��� Paging ���

��� ��
�� Memory Mangament ���

����� Paging on the
�� ���

����� Segments in the ��
�� ���

����
 Selectors in the ��
�� ���

����� Segment descriptors ���

����� Macros used in setting up descriptors � � � � � � � � � � � � � � � � � ���

A Bibliography ���

A�� Normal Bibliography ���

A�� Annotated Bibliography ���

B Tour of the Linux kernel source �
	

B�� Booting the system ���

B�� Spinning the wheel ���

B�
 How the kernel sees a process ���

B�� Creating and destroying processes ���

B�� Executing programs ���

B�� Accessing �lesystems ���

CONTENTS x

B�� Quick Anatomy of a Filesystem Type �
�

B�� The console driver �
�

Chapter �

Before You Begin� � �

��� Typographical Conventions

Bold Used to mark new concepts	WARNINGS	 and keywords in a language�

italics Used for emphasis in text	 and occasionally for quotes or introductions at

the beginning of a section�

slanted Used to mark meta�variables in the text	 especially in representations of

the command line� For example	

ls �l foo

where foo would �stand for� a �lename	 such as �bin�cp� Sometimes	 this

might be di�cult to see	 and so the text is put in angle brackets	 like this�

hslantedi�

Typewriter Used to represent screen interaction	 as in

ls �l �bin�cp

�rwxr�xr�x � root wheel ����� Sep �� ����	 �bin�cp

Also used for code examples	 whether it is �C� code	 a shell script	 or some

thing else	 and to display general �les	 such as con�guration �les� When

necessary for clarity�s sake	 these examples or �gures will be enclosed in thin

boxes�

Key Represents a key to press� You will often see it in this form�

Press return to continue�

�

��
� Assumptions �

� A diamond in the margin	 like a black diamond on a ski hill	 marks �danger�

or �caution�� Read paragraphs marked this way carefully�

��� Assumptions

To read The Linux Kernel Hackers� Guide	 you should have a reasonably good understand

ing of C� That is	 you should be able to read C code without having to look up everything�

You should be able to write simple C programs	 and understand struct�s	 pointers	 macros	

and ANSI C prototyping� You do not have to have a thorough knowledge of the standard

I�O library	 because the standard libraries are not available in the kernel� Some of the more

often used standard I�O functions have been rewritten for use within the kernel	 but these

are explained in this book where necessary�

You should be able to use a good text editor	 recompile the Linux kernel	 and do basic

system administration tasks	 such as making new device entries in �dev��

You should also be able to read	 as I do not o�er support for this book� � �

�Hello� sir� I�m having some problems with this book you wrote��

�Yes��

�I can�t read it��

�Is it plugged in��

�Yes� I also tried a lamp in that socket� so I know it is getting power� But I

really don�t think that�s the problem��

�Why not��

�I can�t read��

� Oh� Well	 let�s start here� See this� Repeat after me� The cat sat on the

rat� � ��

��� Hacking Wisdom

This is a collection of little things that you need to know before you start hacking� It is

rather rambling	 and almost resembles a glossary in form	 but it is not a reference	 but

rather a hacker�s narative	 a short course in kernel hacking�

Static variables

Always initialize static variables� I cannot overemphasize this� Many seemingly random

bugs have been caused by not initializing static variables� Because the kernel is not really a

���� Hacking Wisdom

standard executable	 the bss segment may or may not be zeroed	 depending on the method

used for booting�

libc unavailable

Much of libc is unavailable� That is	 all of libc is unavailable	 but many of the most

common functions are duplicated� See the section �not here yet� for simple documentation

of these functions� Most of the documentation for these are the section
 and section � man

pages�

Linux is not unixTM

However	 it is close� It is not plan �	 nor is it Mach� It is not primarily intended to be

a great commercial success� People will not look kindly upon suggestions to change it

fundamentally to attain any of these goals� It has been suggested that part of the reason

that the quality of the Linux kernel is so high is the unbending devotion of the Linux kernel

hackers to having fun playing with their new kernel�

Useful references

You will encounter certain references that you will need to understand� For instance	

�Stevens� and �Bach�� Read the annotated bibliography �Appendix A� for a list of books

that you should at least recognize references to	 even if you have not read them�

Read the FAQ

Chapter �

Device Drivers

��� What is a Device Driver�

Making hardware work is tedious� To write to a hard disk	 for example	 requires that you

write magic numbers in magic places	 wait for the hard drive to say that it is ready to receive

data	 and then feed it the data it wants	 very carefully� To write to a �oppy disk is even

harder	 and requires that the program supervise the �oppy disk drive almost constantly

while it is running�

Instead of putting code in each application you write to control each device	 you share

the code between applications� To make sure that that code is not compromised	 you protect

it from users and normal programs that use it� If you do it right	 you will be able to add and

remove devices from your system without changing your applications at all� Furthermore	

you need to be able to load your program into memory and run it	 which the operating

system also does� So	 an operating system is essentially a preiviledged	 general	 sharable

library or lowlevel hardware and memory and process control functions and routines�

All versions of un�x have an abstract way of reading and writing devices� By making

the devices act as much as possible like regular �les	 the same calls �read��	 write��	 etc��

can be used for devices and �les� Within the kernel	 there are a set of functions	 registered

with the �lesystem	 which are called to handle requests to do I�O on �device special �les	�

which are those which represent devices��

All devices controlled by the same device driver are given the same major number�

and of those with the same major number	 di�erent devices are distinguished by di�erent

minor numbers��

�See mknod����� for an explanation of how to make these �les�
�This is not strictly true� but is close enough� If you understand where it is not true� you don�t

�

��
� User�space device drivers �

This chapter explains how to write any type of Linux device driver that you might

need to	 including character	 block	 SCSI	 and network drivers� �Well� it will when it is

done� � � � It explains what functions you need to write	 how to initialize your drivers and

obtain memory for them e�ciently	 and what function are built in to Linux to make your

job easier�

Creating device drivers for Linux is easier than you might think� It merely involves

writing a few functions and registering them with the Virtual Filesystem Switch �VFS�	 so

that when the proper device special �les are accessed	 the VFS can call your functions�

However	 a word of warning is due here� Writing a device driver is writing a part of

the Linux kernel� This means that your driver runs with kernel permissions	 and can do

anything it wants to� write to any memory	 reformat your hard drive	 damage your monitor

or video card	 or even break your dishes	 if your dishwasher is controlled by your computer�

Be careful�

Also	 your driver will run in kernel mode	 and the Linux kernel	 like most un�x kernels	

is nonpreemptible� This means that if you driver takes a long time to work without giving

other programs a chance to work	 your computer will appear to �freeze� when your driver

is running� Normal usermode preemptive scheduling does not apply to your driver�

If you choose to write a device driver	 you must take everything written here as a guide	

and no more� I cannot guarantee that this chapter will be free of errors	 and I cannot

guarantee that you will not damage your computer	 even if you follow these instructions

exactly� It is highly unlikely that you will damage it	 but I cannot guarantee against it�

There is only one �infallible� direction I can give you� Back up� Back up before you test

your new device driver	 or you may regret it later�

��� User�space device drivers

It is not always necessary to write a device driver for a device	 especially in applications

where no two applications will compete for the device� The most useful example of this

is a memorymapped device	 but you can also do this with devices in I�O space �devices

accessed with inb�� and outb��	 etc��� If your process is running as superuser �root�	 you

can use the mmap�� call to map some of your process memory to actual memory locations	

by mmap���ing a section of �dev�mem� When you have done this mapping	 it is pretty

easy to write and read from real memory addresses just as you would read and write any

variables�

need to read this section� and if you don�t but want to learn� read the code for the tty devices� which

uses up � major numbers� and may use a third and possibly fourth by the time you read this�

��
� User�space device drivers �

If your driver needs to respond to interrupts	 then you really need to be working in

kernel space	 and need to write a real device driver	 as there is no good way at this time to

deliver interrupts to user processes� Although the DOSEMU project has created something

called the SIG �Silly Interrupt Generator� which allows interrupts to be posted to user

processes �I believe through the use of signals�	 the SIG is not particularly fast	 and should

be thought of as a last resort for things like DOSEMU�

An interrupt �for those who don�t know� is an asyncronous noti�cation posted by the

hardware to alert the device driver of some condition� You have likely dealt with �IRQ�s

when setting up your hardware� an IRQ is an �Interrupt ReQuest line	� which is triggered

when the device wants to talk to the driver� This may be because it has data to give to

the drive	 or because it is now ready to receive data	 or because of some other �exceptional

condition� that the driver needs to know about� It is similar to userlevel processes receiving

a signal� so similar that the same sigaction structure is used in the kernel to deal with

interrupts as is used in userlevel programs to deal with signals� Where the userlevel has

its signals delivered to it by the kernel	 the kernel has interrupt delivered to it by hardware�

If your driver must be accessible to multiple processes at once	 and�or manage contention

for a resource	 then you also need to write a real device driver at the kernel level	 and a

userspace device driver will not be su�cient or even possible�

����� Example� vgalib

A good example of a userspace driver is the vgalib library� The standard read�� and

write�� calls are really inadequate for writing a really fast graphics driver	 and so instead

there is a library which acts conceptually like a device driver	 but runs in user space� Any

processes which use itmust run setuid root	 because it uses the ioperm�� system call� It is

possible for a process that is not setuid root to write to �dev�mem if you have a group mem

or kmem which is allowed write permission to �dev�mem and the process is properly setgid	

but only a process running as root can execute the ioperm�� call�

There are several I�O ports associated with VGA graphics� vgalib creates symbolic

names for this with 	define statements	 and then issues the ioperm�� call like this to make

it possible for the process to read and write directly from and to those ports�

if
ioperm
CRT�IC� �� � �

printf
�VGAlib� can�t get I�O permissions �n��

exit
���

�

ioperm
CRT�IM� �� ��

ioperm
ATT�IW� �� ��

��
� User�space device drivers �

�� � � �

It only needs to do error checking once	 because the only reason for the ioperm�� call to

fail is that it is not being called by the superuser	 and this status is not going to change�

After making this call	 the process is allowed to use inb and outb machine instruc�

tions	 but only on the speci�ed ports� These instructions can be accessed without writing

directly in assembly by including
linux�asm�	 but will only work if you compile with

optimization on� by giving the �O� to gcc� Read
linux�asm� for details�

After arranging for port I�O	 vgalib arranges for writing directly to kernel memory

with the following code�

�� open �dev�mem ��

if

mem�fd � open
��dev�mem�� O�RDWR � � �

printf
�VGAlib� can�t open �dev�mem �n��

exit
���

�

�� mmap graphics memory ��

if

graph�mem � malloc
GRAPH�SIZE �
PAGE�SIZE�� �� NULL �

printf
�VGAlib� allocation error �n��

exit
���

�

if

unsigned longgraph�mem � PAGE�SIZE

graph�mem �� PAGE�SIZE �

unsigned longgraph�mem � PAGE�SIZE�

graph�mem �
unsigned char �mmap

caddr�tgraph�mem�

GRAPH�SIZE�

PROT�READ�PROT�WRITE�

MAP�SHARED�MAP�FIXED�

mem�fd�

GRAPH�BASE

�

if

longgraph�mem � � �

printf
�VGAlib� mmap error �n��

exit
���

�

It �rst opens �dev�mem	 then allocates memory enough so that the mapping can be done

on a page �� KB� boundary	 and then attempts the map� GRAPH SIZE is the size of VGA

memory	 and GRAPH BASE is the �rst address of VGA memory in �dev�mem� Then by

writing to the address that is returned by mmap��	 the process is actually writing to screen

memory�

���� Device Driver Basics �

����� Example� mouse conversion

If you want a driver that acts a bit more like a kernellevel driver	 but does not live in kernel

space	 you can also make a �fo	 or named pipe� This usually lives in the �dev� directory

�although it doesn�t need to� and acts substantially like a device once set up� However	

�fo�s are onedirectional only � they have one reader and one writer�

For instance	 it used to be that if you had a PS��style mouse	 and wanted to run

XFree��	 you had to create a �fo called �dev�mouse	 and run a program called mconv which

read PS�� mouse �droppings� from �dev�psaux	 and wrote the equivalent microsoftstyle

�droppings� to �dev�mouse� Then XFree�� would read the �droppings� from �dev�mouse	

and it would be as if there were a microsoft mouse connected to �dev�mouse��

��� Device Driver Basics

We will assume that you decide that you do not wish to write a userspace device	 and

would rather implement your device in the kernel� You will probably be writing writing two

�les	 a �c �le and a �h �le	 and possibly modifying other �les as well	 as will be described

below� We will refer to your �les as foo�c and foo�h	 and your driver will be the foo driver�

�Should I include at the beginning of this section an example of chargen and

charsink� Many writers do� but I don�t know that it is the best way� I�d like

people�s opinions on this��

����� Namespace

One of the �rst things you will need to do	 before writing any code	 is to name your device�

This name should be a short �probably two or three character� string� For instance	 the

parallel device is the �lp� device	 the �oppies are the �fd� devices	 and SCSI disks are the

�sd� devices� As you write your driver	 you will give your functions names pre�xed with

your chosen string to avoid any namespace confusion� We will call your pre�x foo� and

give your functions names like foo read��� foo write��� etc�

����� Allocating memory

Memory allocation in the kernel is a little di�erent from memory allocation in normal

userlevel programs� Instead of having a malloc�� capable of delivering almost unlimited

�Even though XFree�� is now able to read PS�� style 	droppings
� the concepts in this example

still stand� If you have a better example� I�d be glad to see it�

���� Device Driver Basics �

amounts of memory	 there is a kmalloc�� function that is a bit di�erent�

� Memory is provided in pieces whose size is a power of �	 except that pieces larger

than ��� bytes are allocated in blocks whose size is a power of � minus some small

amount for overhead� You can request any odd size	 but memory will not be used

any more e�ciently if you request a
�byte piece than it will if you request a
� byte

piece� Also	 there is a limit to the amount of memory that can be allocated	 which is

currently �
���� bytes�

� kmalloc�� takes a second argument	 the priority� This is used as an argument to the

get free page�� function	 where it is used to determine when to return� The usual

priority is GFP KERNEL� If it may be called from within an interrupt	 use GFP ATOMIC

and be truly prepared for it to fail �i�e� don�t panic�� This is because if you specify

GFP KERNEL	 kmalloc�� may sleep	 which cannot be done on an interrupt� The other

option is GFP BUFFER	 which is used only when the kernel is allocating bu�er space	

and never in device drivers�

To free memory allocated with kmalloc��	 use one of two functions� kfree�� or kfree s���

These di�er from free�� in a few ways as well�

� kfree�� is a macro which calls kfree s�� and acts like the standard free�� outside

the kernel�

� If you know what size object you are freeing	 you can speed things up by calling

kfree s�� directly� It takes two arguments� the �rst is the pointer that you are

freeing	 as in the single argument to kfree��	 and the second is the size of the object

being freed�

See section ��� for more information on kmalloc��	 kfree��	 and other useful functions�

The other way to acquire memory is to allocate it at initialization time� Your initializa

tion function	 foo init��	 takes one argument	 a pointer to the current end of memory� It

can take as much memory as it wants to	 save a pointer or pointers to that memory	 and

return a pointer to the new end of memory� The advantage of this over statically allocating

large bu�ers �char bar������� is that if the foo driver detects that the foo device is not

attached to the computer	 the memory is not wasted� The init�� function is discussed in

Section ��
���

Be gentle when you use kmalloc� Use only what you have to� Remember that kernel

memory is unswappable	 and thus allocating extra memory in the kernel is a far worse thing

to do in the kernel than in a userlevel program� Take only what you need	 and free it when

you are done	 unless you are going to use it right away again�

���� Device Driver Basics ��

�I believe that it is possible to allocate swappable memory with the vmalloc

function� but that will be documented in the VMM section when it gets written�

In the meantime� enterprising hackers are encouraged to look it up themselves��

����� Character vs� block devices

There are two main types of devices under all un�x systems	 character and block devices�

Character devices are those for which no bu�ering is performed	 and block devices are those

which are accessed through a cache� Block devices must be random access	 but character

devices are not required to be	 though some are� Filesystems can only be mounted if they

are on block devices�

Character devices are read from and written to with two function� foo read�� and

foo write��� The read�� and write�� calls do not return until the operation is complete�

By contrast	 block devices do not even implement the read�� and write�� functions	 and

instead have a function which has historically been called the �strategy routine�� Reads

and writes are done through the bu�er cache mechanism by the generic functions bread���

breada��� and bwrite��� These functions go through the bu�er cache	 and so may or may

not actually call the strategy routine	 depending on whether or not the block requested is

in the bu�er cache �for reads� or on whether or not the bu�er cache is full �for writes�� A

request may be asyncronous� breada�� can request the strategy routine to schedule reads

that have not been asked for	 and to do it asyncronously	 in the background	 in the hopes

that they will be needed later� A more complete explanation of the bu�er cache is presented

below in Section �� �When that section is written� � � �

The sources for character devices are kept in � � ��kernel�chr drv�	 and the sources for

block devices are kept in � � ��kernel�blk drv�� They have similar interfaces	 and are very

much alike	 except for reading and writing� Because of the di�erence in reading and writing	

initialization is di�erent	 as block devices have to register a strategy routine	 which is

registered in a di�erent way than the foo read�� and foo write�� routines of a character

device driver� Speci�cs are dealt with in Section ����� and Section �����

����� Interrupts vs� Polling

Hardware is slow� That is	 in the time it takes to get information from your average device	

the CPU could be o� doing something far more useful than waiting for a busy but slow

device� So to keep from having to busy�wait all the time	 interrupts are provided which

can interrupt whatever is happening so that the operating system can do some task and

return to what it was doing without losing information� In an ideal world	 all devices

would probably work by using interrupts� However	 on a PC or clone	 there are only a few

���� Device Driver Basics ��

interrupts available for use by your peripherals	 so some drivers have to poll the hardware�

ask the hardware if it is ready to transfer data yet� This unfortunately wastes time	 but it

sometimes needs to be done�

Also	 some hardware �like memorymapped displays� is as fast as the rest of the machine	

and does not generate output asyncronously	 so an interruptdriven driver would be rather

silly	 even if interrupts were provided�

In Linux	 many of the drivers are interruptdriven	 but some are not	 and at least one

can be either	 and can be switched back and forth at runtime� For instance	 the lp device

�the parallel port driver� normally polls the printer to see if the printer is ready to accept

output	 and if the printer stays in a not ready phase for too long	 the driver will sleep for

a while	 and try again later� This improves system performance� However	 if you have a

parallel card that supplies an interrupt	 the driver will utilize that	 which will usually make

performance even better�

There are some important programming di�erences between interruptdriven drivers

and polling drivers� To understand this di�erence	 you have to understand a little bit of

how system calls work under un�x� The kernel is not a separate task under un�x� Rather	

it is as if each process has a copy of the kernel� When a process executes a system call	

it does not transfer control to another process	 but rather	 the process changes execution

modes	 and is said to be �in kernel mode�� In this mode	 it executes kernel code which is

trusted to be safe�

In kernel mode	 the process can still access the userspace memory that it was previously

executing in	 which is done through a set of macros� get fs ��� and memcpy fromfs��

read userspace memory	 and put fs ��� and memcpy tofs�� write to userspace memory�

Because the process is still running	 but in a di�erent mode	 there is no question of where

in memory to put the data	 or where to get it from� However	 when an interrupt occurs	

any process might currently be running	 so these macros cannot be used � if they are	 they

will either write over random memory space of the running process or cause the kernel to

panic�

�Explain how to use verify area��� which is only used on cpu�s that don�t

provide write protection while operating in kernel mode� to check whether the

area is safe to write to��

Instead	 when scheduling the interrupt	 a driver must also provide temporary space in

which to put the information	 and then sleep� When the interruptdriven part of the driver

has �lled up that temporary space	 it wakes up the process	 which copies the information

from that temporary space into the process� user space and returns� In a block device

driver	 this temporary space is automatically provided by the bu�er cache mechanism	 but

in a character device driver	 the driver is responsible for allocating it itself�

���� Device Driver Basics ��

����� The sleep�wakeup mechanism

�Begin by giving a general description of how sleeping is used and what it does�

This should mention things like all processes sleeping on an event are woken at

once� and then they contend for the event again� etc� � � �

Perhaps the best way to try to understand the Linux sleepwakeup mechanism is to

read the source for the sleep on�� function	 used to implement both the sleep on�� and

interruptible sleep on�� calls�

static inline void ��sleep�on
struct wait�queue ��p� int state

�

unsigned long flags�

struct wait�queue wait � � current� NULL ��

if
�p

return�

if
current �� task���

panic
�task��� trying to sleep��

current��state � state�

add�wait�queue
p� �wait�

save�flags
flags�

sti
�

schedule
�

remove�wait�queue
p� �wait�

restore�flags
flags�

�

A wait queue is a circular list of pointers to task structures	 de�ned in
linux�wait�h�

to be

struct wait�queue �

struct task�struct � task�

struct wait�queue � next�

��

state is either TASK INTERRUPTIBLE or TASK UNINTERUPTIBLE	 depending on whether or

not the sleep should be interruptable by such things as system calls� In general	 the sleep

should be interruptible if the device is a slow one� one which can block inde�nitely	 including

terminals and network devices or pseudodevices�

add wait queue�� turns o� interrupts	 if they were enabled	 and adds the new struct

wait queue declared at the beginning of the function to the list p� It then recovers the

original interrupt state �enabled or disabled�	 and returns�

���� Device Driver Basics �

save flags�� is a macro which saves the process �ags in its argument� This is done

to preserve the previous state of the interrupt enable �ag� This way	 the restore flags��

later can restore the interrupt state	 whether it was enabled or disabled� sti�� then allows

interrupts to occur	 and schedule�� �nds a new process to run	 and switches to it� Schedule

will not choose this process to run again until the state is changed to TASK RUNNING by

wake up�� called on the same wait queue	 p	 or conceivably by something else�

The process then removes itself from the wait queue	 restores the orginal interrupt

condition with restore flags��	 and returns�

Whenever contention for a resource might occur	 there needs to be a pointer to a

wait queue associated with that resource� Then	 whenever contention does occur	 each pro

cess that �nds itself locked out of access to the resource sleeps on that resource�s wait queue�

When any process is �nished using a resource for which there is a wait queue	 it should

wake up and processes that might be sleeping on that wait queue	 probably by calling

wake up��	 or possibly wake up interruptible���

If you don�t understand why a process might want to sleep	 or want more details on

when and how to structure this sleeping	 I urge you to buy one of the operating systems

textbooks listed in Appendix A and look up mutual exclusion and deadlock�

�This is a cop�out� I should take the time to explain and give examples� but I

am not trying to write an OS text� and I want to keep this under ���� pages� � � �

������� More advanced sleeping

If the sleep on���wake up��mechanism in Linux does not satisfy your device driver needs	

you can code your own versions of sleep on�� and wake up�� that �t your needs� For an

example of this	 look at the serial device driver �� � ��kernel�chr drv�serial�c� in function

block til ready��	 where quite a bit has to be done between the add wait queue�� and

the schedule���

����	 The VFS

The Virtual Filesystem Switch	 or VFS	 is the mechanism which allows Linux to mount

many di�erent �lesystems at the same time� In the �rst versions of Linux	 all �lesystem

access went straight into routines which understood the minix �lesystem� To make it

possible for other �lesystems to be written	 �lesystem calls had to pass through a layer

of indirection which would switch the call to the routine for the correct �lesystem� This

was done by some generic code which can handle generic cases and a structure of pointers

to functions which handle speci�c cases� One structure is of interest to the device driver

���� Device Driver Basics ��

writer� the file operations structure�

From �usr�include�linux�fs�h�

struct file�operations �

int
�lseek
struct inode �� struct file �� off�t� int�

int
�read
struct inode �� struct file �� char �� int�

int
�write
struct inode �� struct file �� char �� int�

int
�readdir
struct inode �� struct file �� struct dirent ��

int count�

int
�select
struct inode �� struct file �� int�

select�table ��

int
�ioctl
struct inode �� struct file �� unsigned int�

unsigned int�

int
�mmap
struct inode �� struct file �� unsigned long�

size�t� int� unsigned long�

int
�open
struct inode �� struct file ��

void
�release
struct inode �� struct file ��

��

Essentially	 this structure constitutes a parital list of the functions that you may have

to write to create your driver�

This section details the actions and requirements of the functions in the

file operations structure� It documents all the arguments that these functions take�

�It should also detail all the defaults� and cover more carefully the possible

return values�

������� The lseek�� function

This function is called when the system call lseek�� is called on the device special �le

representing your device� An understanding of what the system call lseek�� does should

be su�cient to explain this function	 which moves to the desired o�set� It takes these four

arguments�

struct inode � inode

Pointer to the inode structure for this device�

struct file � file

Pointer to the �le structure for this device�

off t offset

O�set from origin to move to�

���� Device Driver Basics ��

int origin � � take the o�set from absolute o�set � �the beginning��

� � take the o�set from the current position�

� � take the o�set from the end�

lseek�� returns �errno on error	 or � � the absolute position after the lseek�

If there is no lseek��	 the kernel will take the default action	 which is to modify

the file��f pos element� For an origin of �	 the default action is to return �EINVAL

if file��f inode is NULL	 otherwise it sets file��f pos to file��f inode��i size

offset� Because of this	 if lseek�� should return an error for your device	 you must write

an lseek�� function which returns that error�

������
 The read�� and write�� functions

The read and write functions read and write a character string to the device� If there is no

read�� or write�� function in the file operations structure registered with the kernel	

and the device is a character device	 read�� or write�� system calls	 respectively	 will return

�EINVAL� If the device is a block device	 these functions should not be implemented	 as the

VFS will route requests through the bu�er cache	 which will call your strategy routine� See

Section ����� for details on how the bu�er cache does this� The read and write functions

take these arguments�

struct inode � inode

This is a pointer to the inode of the device special �le which was accessed�

From this	 you can do several things	 based on the struct inode dec

laration about ��� lines into �usr�include�linux�fs�h� For instance	 you

can �nd the minor number of the �le by this construction� unsigned int

minor � MINOR�inode��i rdev�� The de�nition of the MINOR macro is in

linux�fs�h�	 as are many other useful de�nitions� Read fs�h and a few

device drivers for more details	 and see section ��� for a short description�

inode��i mode can be used to �nd the mode of the �le	 and there are macros

available for this	 as well�

struct file � file

Pointer to �le structure for this device�

char � buf This is a bu�er of characters to read or write� It is located in user�space

memory	 and therefore must be accessed using the get fs���� put fs����

and memcpy�fs�� macros detailed in section ���� Userspace memory is

inaccessible during an interrupt	 so if your driver is interrupt driven	 you

���� Device Driver Basics ��

will have to copy the contents of your bu�er into a queue�

int count This is a count of characters in buf to be read or written� It is the size of

buf	 and is how you know that you have reached the end of buf	 as buf is

not guaranteed to be nullterminated�

������� The readdir�� function

This function is another artifact of file operations being used for implementing �lesys

tems as well as device drivers� Do not implement it� The kernel will return �ENOTDIR if the

system call readdir�� is called on your device special �le�

������	 The select�� function

The select�� function is generally most useful with character devices� It is usually used

to multiplex reads without polling � the application calls the select�� system call	 giving

it a list of �le descriptors to watch	 and the kernel reports back to the program on which

�le descriptor has woken it up� It is also used as a timer� However	 the select�� func

tion in your device driver is not directly called by the system call select��	 and so the

file operations select�� only needs to do a few things� Its arguments are�

struct inode � inode

Pointer to the inode structure for this device�

struct file � file

Pointer to the �le structure for this device�

int sel type

The select type to perform�

SEL IN read

SEL OUT write

SEL EX exception

select table � wait

If wait is not NULL and there is no error condition caused by the select	

select�� should put the process to sleep	 and arrange to be woken up when

the device becomes ready	 usually through an interrupt� If wait is NULL	

then the driver should quickly see if the device is ready	 and return even if

it is not� The select wait�� function does this already�

���� Device Driver Basics ��

If the calling program wants to wait until one of the devices upon which it is selecting

becomes available for the operation it is interested in	 the process will have to be put to sleep

until one of those operations becomes available� This does not require use of a sleep on���

function	 however� Instead the select wait�� function is used� �See section ��� for the

de�nition of the select wait�� function�� The sleep state that select wait�� will cause

is the same as that of sleep on interruptible��	 and	 in fact	 wake up interruptible��

is used to wake up the process�

However	 select wait�� will not make the process go to sleep right away� It returns

directly	 and the select�� function you wrote should then return� The process isn�t put

to sleep until the system call sys select��	 which originall called your select�� func

tion	 uses the information given to it by the select wait�� function to put the process

to sleep� select wait�� adds the process to the wait queue	 but do select�� �called

from sys select��� actually puts the process to sleep by changing the process state to

TASK INTERRUPTIBLE and calling schedule���

The �rst argument to select wait�� is the same wait queue that should be used for

a sleep on��	 and the second is the select table that was passed to your select��

function�

After having explained all this in excruciating detail	 here are two rules to follow�

�� Call select wait�� if the device is not ready	 and return ��

�� Return � if the device is ready�

If you provide a select�� function	 do not provide timeouts by setting

current��timeout	 as the select�� mechanism uses current��timeout	 and the two

methods cannot coexist	 as there is only one timeout for each process� Instead	 con

sider using a timer to provide timeouts� See the description of the add timer�� function in

section ��� for details�

������� The ioctl�� function

The ioctl�� function processes ioctl calls� The structure of your ioctl�� function will be�

�rst error checking	 then one giant �possibly nested� switch statement to handle all possible

ioctls� The ioctl number is passed as cmd	 and the argument to the ioctl is passed as arg�

It is good to have an understanding of how ioctls ought to work before making them up�

If you are not sure about your ioctls	 do not feel ashamed to ask someone knowledgeable

about it	 for a few reasons� you may not even need an ioctl for your purpose	 and if you

do need an ioctl	 there may be a better way to do it than what you have thought of� Since

���� Device Driver Basics ��

ioctls are the least regular part of the device interface	 it takes perhaps the most work to

get this part right� Take the time and energy you need to get it right�

struct inode � inode

Pointer to the inode structure for this device�

struct file � file

Pointer to the �le structure for this device�

unsigned int cmd

This is the ioctl command� It is generally used as the switch variable for a

case statement�

unsigned int arg

This is the argument to the command� This is user de�ned� Since this is

the same size as a �void ��	 this can be used as a pointer to user space	

accessed through the fs register as usual�

Returns� �errno on error

Every other return is userde�ned�

If the ioctl�� slot in the file operations structure is not �lled in	 the VFS will return

�EINVAL� However	 in all cases	 if cmd is one of FIOCLEX	 FIONCLEX	 FIONBIO	 or FIOASYNC	

default processing will be done�

FIOCLEX �x����

Sets the closeonexec bit�

FIONCLEX �x����

Clears the closeonexec bit�

FIONBIO �x����

If arg is nonzero	 set O NONBLOCK	 otherwise clear O NONBLOCK�

FIOASYNC �x����

If arg is nonzero	 set O SYNC	 otherwise clear O SYNC� O SYNC is not yet

implemented	 but it is documented here and parsed in the kernel for com

pleteness�

Note that you have to avoid these four numbers when creating your own ioctls	 since if

they con�ict	 the VFS ioctl code will interpret them as being one of these four	 and act

appropriately	 causing a very hard to track down bug�

���� Device Driver Basics ��

������� The mmap�� function

struct inode � inode

Pointer to inode structure for device�

struct file � file

Pointer to �le structure for device�

unsigned long addr

Beginning of address in main memory to mmap�� into�

size t len Length of memory to mmap���

int prot One of�

PROT READ region can be read�

PROT WRITE region can be written�

PROT EXEC region can be executed�

PROT NONE region cannot be accessed�

unsigned long off

O�set in the �le to mmap�� from� This address in the �le will be mapped to

address addr�

�Here� give a pointer to the documentation for the new vmm �Vir�

tual Memory Mangament� interface� and show how the functions

can be used by a device mmap�� function� Krishna should have the

documentation for the vmm interface in the memory management

section��

������ The open�� and release�� functions

struct inode � inode

Pointer to inode structure for device�

struct file � file

Pointer to �le structure for device�

open�� is called when a device special �les is opened� It is the policy mechanism responsible

for ensuring consistency� If only one process is allowed to open the device at once	 open��

should lock the device	 using whatever locking mechanism is appropriate	 usually setting a

bit in some state variable to mark it as busy� If a process already is using the device �if the

busy bit is already set� then open�� should return �EBUSY� If more than one process may

��	� Character Device Drivers ��

open the device	 this function is responsible to set up any necessary queues that would not

be set up in write��� If no such device exists	 open�� should return �ENODEV to indicate

this� Return � on success�

release�� is called only when the process closes its last open �le descriptor on the �les�

If devices have been marked as busy	 release�� should unset the busy bits if appropriate�

If you need to clean up kmalloc���ed queues or reset devices to preserve their sanity	 this

is the place to do it� If no release�� function is de�ned	 none is called�

������� The init�� function

This function is not actually included in the file operations structure	 but you are re

quired to implement it	 because it is this function that registers the file operations

structure with the VFS in the �rst place � without this function	 the VFS could not route

any requests to the driver� This function is called when the kernel �rst boots and is con

�guring itself� init�� is passed a variable holding the address of the current end of used

memory� The init function then detects all devices	 allocates any memory it will want based

on how many devices exist �this is often used to hold such things as queues	 for interrupt

driven devices�	 and then	 saving the addresses it needs	 it returns the new end of memory�

You will have to call your init�� function from the correct place� for a character device	

this is chr dev init�� in � � ��kernel�chr dev�mem�c� In general	 you will only pass the

memory start variable to your init�� function�

While the init�� function runs	 it registers your driver by calling the proper registration

function� For character devices	 this is register chrdev���� register chrdev�� takes

three arguments� the major device number �an int�	 the �name� of the device �a string�	

and the address of the device fops file operations structure�

When this is done	 and a character or block special �le is accessed	 the VFS �lesystem

switch automagically routes the call	 whatever it is	 to the proper function	 if a function

exists� If the function does not exist	 the VFS routines take some default action�

The init�� function usually displays some information about the driver	 and usually

reports all hardware found� All reporting is done via the printk�� function�

��� Character Device Drivers

�Write appropriate blurb here�

�See section��

��	� Character Device Drivers ��

����� Initialization

Besides functions de�ned by the file operations structure	 there is at least one other

function that you will have to write	 the foo init�� function� You will have to change

chr dev init�� in chr drv�mem�c to call your foo init�� function� foo init�� will take

one argument	 long mem start	 which will be the address of the current end of allocated

memory� If your driver needs to allocate more than �K of contiguous space at runtime	 here

is the place� Simply save mem start in an appropriate variable	 add however much space

you need to mem start	 and return the new value� Your driver will now have exclusive

access to the memory between the old and new values of mem start�

foo init�� should �rst call register chrdev�� to register itself and avoid device num

ber contention� register chrdev�� takes three arguments�

int major This is the major number which the driver wishes to allocate�

char �name This is the symbolic name of the driver� It is currently not used for anything	

but this may change in the future�

struct file operations �f ops

This is the address of your file operations structure de�ned in Section ��

Returns� � if no other character device has registered with the same major number�

non� if the call fails	 presumably because another character device has al

ready allocated that major number�

Generally	 the foo init�� routine will then attempt to detect the hardware that it is

supposed to be driving� It should make sure that all necessary data structures are �lled out

for all present hardware	 and have some way of ensuring that nonpresent hardware does

not get accessed� �detail di�erent ways of doing this��

����� Interrupts vs� Polling

In a polling driver	 the foo read�� and foo write�� functions are pretty easy to write�

Here is an example of foo write���

static int foo�write
struct inode � inode� struct file � file�

char � buf� int count

�

unsigned int minor � MINOR
inode��i�rdev�

char ret�

��	� Character Device Drivers ��

while
count � � �

ret � foo�write�byte
minor�

if
ret � � �

foo�handle�error
WRITE� ret� minor�

continue�

�

buf�� � ret� count��

�

return count�

�

foo write byte�� and foo handle error�� are either functions de�ned elsewhere in foo�c

or pseudocode� WRITE would be a constant or 	define�

It should be clear from this example how to code the foo read�� function as well�

Interruptdriven drivers are a little more di�cult� Here is an example of a foo write��

that is interruptdriven�

static int foo�write
struct inode � inode� struct file � file�

char � buf� int count

�

unsigned int minor � MINOR
inode��i�rdev�

unsigned long copy�size�

unsigned long total�bytes�written � ��

unsigned long bytes�written�

struct foo�struct �foo � �foo�table�minor��

do �

copy�size �
count �� FOO�BUFFER�SIZE � count � FOO�BUFFER�SIZE�

memcpy�fromfs
foo��foo�buffer� buf� copy�size�

while
copy�size �

�� initiate interrupts ��

if
some�error�has�occured �

�� handle error condition ��

�

current��timeout � jiffies � FOO�INTERRUPT�TIMEOUT�

�� set timeout in case an interrupt has been missed ��

interruptible�sleep�on
�foo��foo�wait�queue�

bytes�written � foo��bytes�xfered�

foo��bytes�written � ��

if
current��signal � current��blocked �

��	� Character Device Drivers �

if
total�bytes�written � bytes�written

return total�bytes�written � bytes�written�

else

return �EINTR� �� nothing was written� system

call was interrupted� try again ��

�

�

total�bytes�written �� bytes�written�

buf �� bytes�written�

count �� bytes�written�

� while
count � ��

return total�bytes�written�

�

static void foo�interrupt
int irq

�

struct foo�struct �foo � �foo�table�foo�irq�irq���

�� Here� do whatever actions ought to be taken on an interrupt!

Look at a flag in foo�table to know whether you ought to be

reading or writing! ��

�� Increment foo��bytes�xfered by however many characters were

read or written ��

if
buffer too full�empty

wake�up�interruptible
�foo��foo�wait�queue�

�

Again	 a foo read�� function is written analagously� foo table� is an array of

structures	 each of which has several members	 some of which are foo wait queue and

bytes xfered	 which can be used for both reading and writing� foo irq� is an array of

�� integers	 and is used for looking up which entry in foo table� is associated with the

irq generated and reported to the foo interrupt�� function�

To tell the interrupthandling code to call foo interrupt��	 you need to use either

request irq�� or irqaction��� This is either done when foo open�� is called	 or if you

want to keep things simple	 when foo init�� is called� request irq�� is the simpler of

the two	 and works rather like an oldstyle signal handler� It takes two arguments� the �rst

���� Block Device Drivers ��

is the number of the irq you are requesting	 and the second is a pointer to your interrupt

handler	 which must take an integer argument �the irq that was generated� and have a

return type of void� request irq�� returns �EINVAL if irq � �� or if the pointer to the

interrupt handler is NULL	 �EBUSY if that interrupt has already been taken	 or � on success�

irqaction�� works rather like the userlevel sigaction��	 and in fact reuses the

sigaction structure� The sa restorer�� �eld of the sigaction structure is not used	 but

everything else is the same� See the entry for irqaction�� in Section ���	 Supporting

Functions	 for further information about irqaction���

����� TTY drivers

�The reasons that this section has not been written are that I don�t know enough

about TTY stu� yet� Ted re�wrote the tty devices for the ��� series� but I

haven�t studied them yet��

��	 Block Device Drivers

To mount a �lesystem on a device	 it must be a block device driven by a block device driver�

This means that the device must be a random access device	 not a stream device� In other

words	 you must be able to seek to any location on the physical device at any time�

You do not provide read�� and write�� routines for a block device� Instead	 your

driver uses block read�� and block write��	 which are generic functions	 provided by the

VFS	 which will call the strategy routine	 or request�� function	 which you write in place

of read�� and write�� for your driver� This strategy routine is also called by the bu�er

cache �See section ���	 which is called by the VFS routines �See chapter ��� which is how

normal �les on normal �lesystems are read and written�

Requests for I�O are given by the bu�er cache to a routine called ll rw block��	 which

constructs lists of requests ordered by an elevator algorithm� which sorts the lists to make

accesses faster and more e�cient� It	 in turn	 calls your request�� function to actually do

the I�O�

Note that although SCSI disks and CDROMs are considered block devices	 they are

handled specially �as are all SCSI devices�� Refer to section ���	 Writing a SCSI Driver	 for

details��

�Although SCSI didsks and CDROMs are block devices� SCSI tapes� like other tapes� are generally

used as character devices�

���� Block Device Drivers ��

����� Initialization

Initialization of block devices is a bit more complex than initialization of character de

vices	 especially as some �initialization� has to be done at compile time� There is also a

register blkdev�� call that corresponds to the character device register chrdev�� call	

which the driver must call to say that it is present	 working	 and active�

������� The �le blk�h

At the top of your driver code	 after all other included header �les	 you need to write two

lines of code�

"define MAJOR NR DEVICE MAJOR

"include �blk!h�

where DEVICE MAJOR is the major number of your device� drivers�block�blk�h requires

the use of the MAJOR NR de�ne to set up many other de�nes and macros for your driver�

Now you need to edit blk�h� Under 	ifdef MAJOR NR	 there is a section of de�nes that

are conditionally included for certain major numbers	 protected by 	elif �MAJOR NR ��

DEVICE MAJOR�� At the end of this list	 you will add another section for your driver� In

that section	 the following lines are required�

"define DEVICE NAME �device�

"define DEVICE REQUEST do dev request

"define DEVICE ON
device �� usually blank� see below ��

"define DEVICE OFF
device �� usually blank� see below ��

"define DEVICE NR
device
MINOR
device

DEVICE NAME is simply the device name� See the other entries in blk�h for examples�

DEVICE REQUEST is your strategy routine	 which will do all the I�O on the device� See

section ����
 for more details on the strategy routine�

DEVICE ON and DEVICE OFF are for devices that need to be turned on and o�	 like �oppies�

In fact	 the �oppy driver is currently the only device driver which uses these de�nes�

DEVICE NR�device� is used to determine the number of the physical device from the

minor device number� For instance	 in the hd driver	 since the second hard drive starts at

minor ��	 DEVICE NR�device� is de�ned to be �MINOR�device������

If your driver is interruptdriven	 you will also set

���� Block Device Drivers ��

"define DEVICE INTR do dev

which will become a variable automatically de�ned and used by the remainder of blk�h	

speci�cally by the SET INTR�� and CLEAR INTR macros�

You might also consider setting these de�nes�

"define DEVICE TIMEOUT DEV TIMER

"define TIMEOUT VALUE n

where n is the number of ji�es �clock ticks� hundredths of a second on Linux�
��� to time

out after if no interrupt is received� These are used if your device can become �stuck�� a

condition where the driver waits inde�nitely for an interrupt that will never arrive� If you

de�ne these	 they will automatically be used in SET INTR to make your driver time out� Of

course	 your driver will have to be able to handle the possibility of being timed out by a

timer� See section �� for an explanation of how to do this�

������
 Recognizing PC standard partitions

�Inspect the routines in genhd�c and include detailed� correct instructions on

how to use them to allow your device to use the standard dos partitioning

scheme��

����� The Bu
er Cache

�Here� it should be explained brie�y how ll rw block�� is called� about get�

blk�� and bread�� and breada�� and bwrite��� etc� A real explanation of the

bu�er cache is reserved for the VFS reference section� where something on the

complexity order of Bach�s treatment of the bu�er cache should exist�

For now� we assume that the reader understands the concepts behind the

bu�er cache� If you are a reader and don�t� please email me and I�ll help you�

which will also help me put my thoughts together for that section��

����� The Strategy Routine

All reading and writing of blocks is done through the strategy routine� This routine takes

no arguments and returns nothing	 but it knows where to �nd a list of requests for I�O

�CURRENT	 de�ned by default as blk devMAJOR NR��current request�	 and knows how to

get data from the device into the blocks� It is called with interrupts disabled so as to avoid

���� Supporting Functions ��

race conditions	 and is responsible for turning on interrupts with a call to sti�� before

returning�

The strategy routine �rst calls the INIT REQUESTmacro	 which makes sure that requests

are really on the request list and does some other sanity checking� add request�� will have

already sorted the requests in the proper order according to the elevator algorithm �using

an insertion sort	 as it is called once for every request�	 so the strategy routine �merely�

has to satisfy the request	 call end request���	 which will take the request o� the list	 and

then if there is still another request on the list	 satisfy it and call end request���	 until

there are no more requests on the list	 at which time it returns�

If the driver is interruptdriven	 the strategy routine need only schedule the �rst request

to occur	 and have the interrupthandler call end request��� and the call the strategy

routine again	 in order to schedule the next request� If the driver is not interruptdriven	

the strategy routine may not return until all I�O is complete�

If for some reason I�O fails permanently on the current request	 end request��� must

be called to destroy the request�

A request may be for a read or write� The driver determines whether a request is for a

read or write by examining CURRENT��cmd� If CURRENT��cmd �� READ	 the request is for a

read	 and if CURRENT��cmd �� WRITE	 the request is for a write� If the device has seperate

interrupt routines for handling reads and writes	 SET INTR�n� must be called to assure that

the proper interrupt routine will be called�

�Here I need to include samples of both a polled strategy routine and an

interrupt�driven one� The interrupt�driven one should provide seperate read

and write interrupt routines to show the use of SET INTR��

����� Example Drivers

�I�m not sure this belongs here � we�ll see� I�ll leave the stub here for now��

��
 Supporting Functions

Here is a list of many of the most common supporting functions available to the device

driver writer� If you �nd other supporting functions that are useful	 please point them out

to me� I know this is not a complete list	 but I hope it is a helpful one�

add request��

���� Supporting Functions ��

static void add�request�struct blk�dev�struct �dev�

struct request � req�

This is a static function in ll rw block�c	 and cannot be called by other code�

However	 an understanding of this function	 as well as an understanding of

ll rw block��	 may help you understand the strategy routine�

If the device that the request is for has an empty request queue	 the re

quest is put on the queue and the strategy routine is called� Otherwise	 the

proper place in the queue is chosen and the request is inserted in the queue	

maintaining proper order by insertion sort�

Proper order �the elevator algorithm� is de�ned as�

a� Reads come before writes�

b� Lower minor numbers come before higher minor numbers�

c� Lower block numbers come before higher block numbers�

The elevator algorithm is implemented by the macro IN ORDER��	 which is

de�ned in drivers�block�blk�h

De�ned in� drivers�block�ll rw block�c

See also� make request��	 ll rw block���

add timer�� void add timer�struct timer list � timer�

	include
linux�timer�h�

Installs the timer structures in the list timer in the timer list�

The timer list structure is de�ned by�

struct timer�list �

struct timer�list �next�

struct timer�list �prev�

unsigned long expires�

unsigned long data�

void
�function
unsigned long�

��

In order to call add timer��	 you need to allocate a timer list structure	

and then call init timer��	 passing it a pointer to your timer list� It will

nullify the next and prev elements	 which is the correct initialization� If

necessary	 you can allocate multiple timer list structures	 and link them

into a list� Do make sure that you properly initialize all the unused pointers

to NULL	 or the timer code may get very confused�

���� Supporting Functions ��

For each struct in your list	 you set three variables�

expires The number of ji�es ����ths of a second in Linux���� after

which to time out�

function Kernelspace function to run after timeout has occured�

data Passed as the argument to functionwhen function is called�

Having created this list	 you give a pointer to the �rst �usually the only�

element of the list as the argument to add timer��� Having passed that

pointer	 keep a copy of the pointer handy	 because you will need to use it

to modify the elements of the list �to set a new timeout when you need a

function called again	 to change the function to be called	 or to change the

data that is passed to the function� and to delete the timer	 if necessary�

Note� This is not processspeci�c� Therefore	 if you want to wake a certain

process at a timeout	 you will have to use the sleep and wake primitives�

The functions that you install through this mechanism will run in the same

context that interrupt handlers run in�

De�ned in� kernel�sched�c

See also� timer table in include�linux�timer�h	 init timer��	

del timer���

cli�� 	define cli�� asm volatile ��cli����

	include
asm�system�h�

Prevents interrupts from being acknowledged� cli stands for �CLear Inter

rupt enable��

See also� sti��

del timer void del timer�struct timer list � timer�

	include
linux�timer�h�

Deletes the timer structures in the list timer in the timer list�

The timer list that you delete must be the address of a timer list you have

earlier installed with add timer��� Once you have called del timer�� to

delete the timer from the kernel timer list	 you may deallocate the memory

used in the timer list structures	 as it is no longer referenced by the kernel

timer list�

���� Supporting Functions
�

De�ned in� kernel�sched�c

See also� timer table in include�linux�timer�h	 init timer��	

add timer���

end request��

static void end request�int uptodate�

	include �blk�h�

Called when a request has been satis�ed or aborted� Takes one argument�

uptodate If not equal to �	 means that the request has been satis�ed�

If equal to �	 means that the request has not been satis�ed�

If the request was satis�ed �uptodate �� ��	 end request�� maintains the

request list	 unlocks the bu�er	 and may arrange for the scheduler to be

run at the next convenient time �need resched � �� this is implicit in

wake up��	 and is not explicitly part of end request���	 before waking up

all processes sleeping on the wait for request event	 which is slept on in

make request��	 ll rw page��	 and ll rw swap file���

Note� This function is a static function	 de�ned in drivers�block�blk�h for

every nonSCSI device that includes blk�h� �SCSI devices do this di�erently�

the highlevel SCSI code itself provides this functionality to the lowlevel

devicespeci�c SCSI device drivers�� It includes several de�nes dependent

on static device information	 such as the device number� This is marginally

faster than a more generic normal C function�

De�ned in� kernel�blk drv�blk�h

See also� ll rw block��	 add request��	 make request���

free irq�� void free irq�unsigned int irq�

	include
linux�sched�h�

Frees an irq previously aquired with request irq�� or irqaction��� Takes

one argument�

irq interrupt level to free�

De�ned in� kernel�irq�c

See also� request irq��	 irqaction���

���� Supporting Functions
�

get user��� inline unsigned char get user byte�const char � addr�

inline unsigned short get user word�const short � addr�

inline unsigned long get user long�const int �addr�

	include
asm�segment�h�

Allows a driver to access data in user space	 which is in a di�erent segment

than the kernel�

Note� these functions may cause implicit I�O	 if the memory being accessed�

has been swapped out	 and therefore preemption may occur at this point�

Do not include these functions in critical sections of your code even if the

critical sections are protected by cli���sti�� pairs	 because that implicit

I�O will violate the integrity of your cli���sti�� pair� If you need to get

at userspace memory	 copy it to kernelspace memory before you enter your

critical section�

These functions take one argument�

addr Address to get data from�

Returns� Data at that o�set in user space�

De�ned in� include�asm�segment�h

See also� memcpy �fs��	 put user���	 cli��	 sti���

inb��� inb p��

inline unsigned int inb�unsigned short port�

inline unsigned int inb p�unsigned short port�

	include
asm�io�h�

Reads a byte from a port� inb�� goes as fast as it can	 while inb p�� pauses

before returning� Some devices are happier if you don�t read from them as

fast as possible� Both functions take one argument�

port Port to read byte from�

Returns� The byte is returned in the low byte of the
�bit integer	 and

the
 high bytes are unused	 and may be garbage�

De�ned in� include�asm�io�h

See also� outb��	 outb p���

���� Supporting Functions
�

init timer��

Inline function for initializing timer list structures for use with

add timer���

De�ned in� include�linux�timer�h

See also� add timer���

irqaction�� int irqaction�unsigned int irq� struct sigaction �new�

	include
linux�sched�h�

Hardware interrupts are really a lot like signals� Therefore	 it makes sense

to be able to register an interrupt like a signal� The sa restorer�� �eld

of the struct sigaction is not used	 but otherwise it is the same� The

int argument to the sa�handler�� function may mean di�erent things	 de

pending on whether or not the IRQ is installed with the SA INTERRUPT �ag�

If it is not installed with the SA INTERRUPT �ag	 then the argument passed

to the handler is a pointer to a register structure	 and if it is installed with

the SA INTERRUPT �ag	 then the argument passed is the number of the IRQ�

For an example of handler set to use the SA INTERRUPT �ag	 look at how

rs interrupt�� is installed in � � ��kernel�chr drv�serial�c

The SA INTERRUPT �ag is used to determine whether or not the interrupt

should be a �fast� interrupt� Normally	 upon return from the interrupt	

need resched	 a global �ag	 is checked� If it is set ��� ��	 then schedule��

is run	 which may schedule another process to run� They are also run with all

other interrupts still enabled� However	 by setting the sigaction structure

member sa flags to SA INTERRUPT	 �fast� interrupts are chosen	 which leave

out some processing	 and very speci�cally do not call schedule���

irqaction�� takes two arguments�

irq The number of the IRQ the driver wishes to acquire�

new A pointer to a sigaction struct�

Returns� �EBUSY if the interrupt has already been acquired	

�EINVAL if sa�handler�� is NULL	

� on success�

De�ned in� kernel�irq�c

See also� request irq��� free irq��

���� Supporting Functions

IS ��inode� IS RDONLY�inode� ��inode���i flags � MS RDONLY�

IS NOSUID�inode� ��inode���i flags � MS NOSUID�

IS NODEV�inode� ��inode���i flags � MS NODEV�

IS NOEXEC�inode� ��inode���i flags � MS NOEXEC�

IS SYNC�inode� ��inode���i flags � MS SYNC�

	include
linux�fs�h�

These �ve test to see if the inode is on a �lesystem mounted the correspond

ing �ag�

kfree��� 	define kfree�x� kfree s��x�� ��

void kfree s�void � obj� int size�

	include
linux�malloc�h�

Free memory previously allocated with kmalloc��� There are two possible

arguments�

obj Pointer to kernel memory to free�

size To speed this up	 if you know the size	 use kfree s�� and

provide the correct size� This way	 the kernel memory allo

cator knows which bucket cache the object belongs to	 and

doesn�t have to search all of the buckets� �For more details

on this terminology	 read mm�kmalloc�c��

De�ned in� mm�kmalloc�c	 include�linux�malloc�h

See also� kmalloc���

kmalloc�� void � kmalloc�unsigned int len� int priority�

	include
linux�kernel�h�

kmalloc�� used to be limited to ���� bytes� It is now limited to �
����

bytes ��
� � ������ ���� Buckets	 which used to be all exact powers of �	 are

now a power of � minus some small number	 except for numbers less than

or equal to ���� For more details	 see the implementation in mm�kmalloc�c�

kmalloc�� takes two arguments�

len Length of memory to allocate� If the maximum is exceeded	

kmalloc will log an error message of �kmalloc of too large

a block ��d bytes��� and return NULL�

���� Supporting Functions
�

priority GFP KERNEL or GFP ATOMIC� If GFP KERNEL is chosen	

kmalloc�� may sleep	 allowing preemption to occur� This

is the normal way of calling kmalloc��� However	 there are

cases where it is better to return immediately if no pages

are available	 without attempting to sleep to �nd one� One

of the places in which this is true is in the swapping code	

because it could cause race conditions	 and another in the

networking code	 where things can happen at much faster

speed that things could be handled by swapping to disk to

make space for giving the networking code more memory�

The most important reason for using GFP ATOMIC is if it is

being called from an interrupt	 when you cannot sleep	 and

cannot receive other interrupts�

Returns� NULL on failure�

Pointer to allocated memory on success�

De�ned in� mm�kmalloc�c

See also� kfree��

ll rw block��

void ll rw block�int rw� int nr� struct buffer head �bh��

	include
linux�fs�h�

No device driver will ever call this code� it is called only through the bu�er

cache� However	 an understanding of this function may help you understand

the function of the strategy routine�

After sanity checking	 if there are no pending requests on the device�s re

quest queue	 ll rw block�� �plugs� the queue so that the requests don�t

go out until all the requests are in the queue	 sorted by the elevator algo

rithm� make request�� is then called for each request� If the queue had

to be plugged	 then the strategy routine for that device is not active	 and

it is called	 with interrupts disabled� It is the responsibility of the

strategy routine to re�enable interrupts�

De�ned in� devices�block�ll rw block�c

See also� make request��	 add request���

MAJOR�� 	define MAJOR�a� ���unsigned��a������

	include
linux�fs�h�

���� Supporting Functions
�

This takes a �� bit device number and gives the associated major number

by shifting o� the minor number�

See also� MINOR���

make request��

static void make request�int major� int rw� struct buffer head

�bh�

This is a static function in ll rw block�c	 and cannot be called by other code�

However	 an understanding of this function	 as well as an understanding of

ll rw block��	 may help you understand the strategy routine�

make request�� �rst checks to see if the request is readahead or writeahead

and the bu�er is locked� If so	 it simply ignores the request and returns�

Otherwise	 it locks the bu�er and	 except for SCSI devices	 checks to make

sure that write requests don�t �ll the queue	 as read requests should take

precedence�

If no spaces are available in the queue	 and the request is neither readahead

nor writeahead	 make request�� sleeps on the event wait for request	 and

tries again when woken� When a space in the queue is found	 the request

information is �lled in and add request�� is called to actually add the

request to the queue�

De�ned in� devices�block�ll rw block�c

See also� add request��	 ll rw block���

MINOR�� 	define MINOR�a� ��a���xff�

	include
linux�fs�h�

This takes a �� bit device number and gives the associated minor number

by masking o� the major number�

See also� MAJOR���

memcpy �fs��

inline void memcpy�tofs�void � to� const void � from�

unsigned long n�

inline void memcpy�fromfs�void � to� const void � from�

unsigned long n�

	include
asm�segment�h�

���� Supporting Functions
�

Copies memory between user space and kernel space in chunks larger than

one byte	 word	 or long� Be very careful to get the order of the arguments

right!

Note� these functions may cause implicit I�O	 if the memory being accessed�

has been swapped out	 and therefore preemption may occur at this point�

Do not include these functions in critical sections of your code	 even if the

critical sections are protected by cli���sti�� pairs	 because implicit I�O

will violate the cli�� protection� If you need to get at userspace memory	

copy it to kernelspace memory before you enter your critical section�

These functions take three arguments�

to Address to copy data to�

from Address to copy data from�

n Number of bytes to copy�

De�ned in� include�asm�segment�h

See also� get user���	 put user���	 cli��	 sti���

outb��� outb p��

inline void outb�char value� unsigned short port�

inline void outb p�char value� unsigned short port�

	include
asm�io�h�

Writes a byte to a port� outb�� goes as fast as it can	 while outb p�� pauses

before returning� Some devices are happier if you don�t write to them as fast

as possible� Both functions take two arguments�

value The byte to write�

port Port to write byte to�

De�ned in� include�asm�io�h

See also� inb��	 inb p���

printk�� int printk�const char� fmt� ����

	include
linux�kernel�h�

printk�� is a version of printf�� for the kernel	 with some restrictions� It

cannot handle �oats	 and has a few other limitations	 which are documented

in kernel�vsprintf�c� It takes a variable number of arguments�

���� Supporting Functions
�

fmt Format string	 printf�� style�

��� The rest of the arguments	 printf�� style�

Returns� Number of bytes written�

Note� printk�� may cause implicit I�O	 if the memory�

being accessed has been swapped out	 and therefore pre

emption may occur at this point� Also	 printk�� will set

the interrupt enable �ag	 so never use it in code pro�

tected by cli��� Because it causes I�O	 it is not safe to use

in protected code anyway	 even it if didn�t set the interrupt

enable �ag�

De�ned in� kernel�printk�c�

put user��� inline void put user byte�char val� char �addr�

inline void put user word�short val� short �addr�

inline void put user long�unsigned long val� unsigned long

�addr�

	include
asm�segment�h�

Allows a driver to write data in user space	 which is in a di�erent segment

than the kernel� When entering the kernel through a system call	 a selector

for the current user space segment is put in the fs segment register	 thus the

names�

Note� these functions may cause implicit I�O	 if the memory being accessed�

has been swapped out	 and therefore preemption may occur at this point�

Do not include these functions in critical sections of your code even if the

critical sections are protected by cli���sti�� pairs	 because that implicit

I�O will violate the integrity of your cli���sti�� pair� If you need to get

at userspace memory	 copy it to kernelspace memory before you enter your

critical section�

These functions take two arguments�

val Value to write

addr Address to write data to�

De�ned in� asm�segment�h

See also� memcpy �fs��	 get user���	 cli��	 sti���

���� Supporting Functions
�

register �dev��

int register�chrdev�unsigned int major� const char �name�

struct file�operations �fops�

int register�blkdev�unsigned int major� const char �name�

struct file�operations �fops�

	include
linux�fs�h�

	include
linux�errno�h�

Registers a device with the kernel	 letting the kernel check to make sure that

no other driver has already grabbed the same major number� Takes three

arguments�

major Major number of device being registered�

name Unique string identifying driver� Used in the output for the

�proc�devices �le�

fops Pointer to a file operations structure for that device� This

must not be NULL	 or the kernel will panic later�

Returns� �EINVAL if major is � MAX CHRDEV or MAX BLKDEV �de�ned in

linux�fs�h��	 for character or block devices	 respectively�

�EBUSY if major device number has already been allocated�

� on success�

De�ned in� fs�devices�c

See also� unregister �dev��

request irq��

int request�irq�unsigned int irq� void ��handler��int��

unsigned long flags� const char �device�

	include
linux�sched�h�

	include
linux�errno�h�

Request an IRQ from the kernel	 and install an IRQ interrupt handler if

successful� Takes four arguments�

irq The IRQ being requested�

���� Supporting Functions
�

handler The handler to be called when the IRQ occurs� The argument

to the handler function will be the number of the IRQ that

it was invoked to handle�

flags Set to SA INTERRUPT to request a �fast� interrupt or � to

request a normal	 �slow� one�

device A string containing the name of the device driver	 device�

Returns� �EINVAL if irq � �� or handler � NULL�

�EBUSY if irq is already allocated�

� on success�

If you need more functionality in your interrupt handling	 use the

irqaction�� function� This uses most of the capabilities of the sigaction

structure to provide interrupt services similar to to the signal services pro

vided by sigaction�� to userlevel programs�

De�ned in� kernel�irq�c

See also� free irq��	 irqaction���

select wait��

inline void select�wait�struct wait�queue ��wait�address�

select�table �p�

	include
linux�sched�h�

Add a process to the proper select wait queue� This function takes two

arguments�

wait address

Address of a wait queue pointer to add to the circular list of

waits�

p If p is NULL	 select wait does nothing	 otherwise the current

process is put to sleep� This should be the select table

�wait variable that was passed to your select�� function�

De�ned in� linux�sched�h

See also� �sleep on��� wake up���

���� Supporting Functions ��

�sleep on�� void sleep on�struct wait queue �� p�

void interruptible sleep on�struct wait queue �� p�

	include
linux�sched�h�

Sleep on an event	 putting a wait queue entry in the list so that the pro

cess can be woken on that event� sleep on�� goes into an uninteruptible

sleep� The only way the process can run is to be woken by wake up���

interruptible sleep on�� goes into an interruptible sleep that can be wo

ken by signals and process timeouts will cause the process to wake up� A

call to wake up interruptible�� is necessary to wake up the process and

allow it to continue running where it left o�� Both take one argument�

p Pointer to a proper wait queue structure that records the

information needed to wake the process�

De�ned in� kernel�sched�c

See also� select wait��	 wake up����

sti�� 	define sti�� asm volatile ��sti����

	include
asm�system�h�

Allows interrupts to be acknowledged� sti stands for �SeT Interrupt en

able��

De�ned in� asm�system�h

See also� cli���

sys get��� int sys getpid�void�

int sys getuid�void�

int sys getgid�void�

int sys geteuid�void�

int sys getegid�void�

int sys getppid�void�

int sys getpgrp�void�

These system calls may be used to get the information described in the table

below	 or the information can be extracted directly from the process table	

like this�

foo � current��pid�

���� Supporting Functions ��

pid Process ID

uid User ID

gid Group ID

euid E�ective user ID

egid E�ective group ID

ppid Process ID of process� parent process

pgid Group ID of process� parent process

The system calls should not be used because they are slower and take more

space� Because of this	 they are no longer exported as symbols throughout

the whole kernel�

De�ned in� kernel�sched�c

unregister �dev��

int unregister�chrdev�unsigned int major� const char �name�

int unregister�blkdev�unsigned int major� const char �name�

	include
linux�fs�h�

	include
linux�errno�h�

Removes the registration for a device device with the kernel	 letting the

kernel give the major number to some other device� Takes two arguments�

major Major number of device being registered� Must be the same

number given to register �dev���

name Unique string identifying driver� Must be the same number

given to register �dev���

Returns� �EINVAL if major is � MAX CHRDEV or MAX BLKDEV �de�ned in

linux�fs�h��	 for character or block devices	 respectively	

or if there have not been �le operations registered for major

device major	 or if name is not the same name that the device

was registered with�

� on success�

De�ned in� fs�devices�c

See also� register �dev��

��� Writing a SCSI Device Driver ��

wake up��� void wake up�struct wait queue �� p�

void wake up interruptible�struct wait queue �� p�

	include
linux�sched�h�

Wakes up a process that has been put to sleep by the matching �sleep on��

function� wake up�� can be used to wake up tasks in a queue where

the tasks may be in a TASK INTERRUPTIBLE or TASK UNINTERRUPTIBLE

state	 while wake up interruptible�� will only wake up tasks in a

TASK INTERRUPTIBLE state	 and will be insigni�cantly faster than wake up��

on queues that have only interruptible tasks� These take one argument�

q Pointer to the wait queue structure of the process to be wo

ken�

Note that wake up�� does not switch tasks	 it only makes processes that are

woken up runnable	 so that the next time schedule�� is called	 they will be

candidates to run�

De�ned in� kernel�sched�c

See also� select wait��	 �sleep on��

��� Writing a SCSI Device Driver

Copyright c� ���� Rickard E� Faith �faith�cs�unc�edu	� All rights reserved� Per

mission is granted to make and distribute verbatim copies of this paper provided the

copyright notice and this permission notice are preserved on all copies�

This is �with the author�s explicit permission	 a modi�ed copy of the original doc

ument� If you wish to reproduce just this section you are advised to get the original

version by ftp from ftp�cs�unc�edu��pub�faith�papers�scsi�paper�tar�gz

����� Why You Want to Write a SCSI Driver

Currently	 the Linux kernel contains drivers for the following SCSI host adapters� Adaptec

����	 Adaptec ����	 Future Domain TMC�����TMC����	 Seagate ST���ST��	 Ultra

Stor ��F	 and Western Digital WD����� You may want to write your own driver for an

unsupported host adapter� You may also want to rewrite or update one of the existing

drivers�

��� Writing a SCSI Device Driver �

����� What is SCSI�

The foreword to the SCSI� standard draft "ANS# gives a succinct de�nition of the Small

Computer System Interface and brie�y explains how SCSI� is related to SCSI� and CCS�

The SCSI protocol is designed to provide an e�cient peertopeer I�O bus

with up to � devices	 including one or more hosts� Data may be transferred asyn

chronously at rates that only depend on device implementation and cable length�

Synchronous data transfers are supported at rates up to �� megatransfers per

second� With the
� bit wide data transfer option	 data rates of up to ��

megabytes per second are possible�

SCSI� includes command sets for magnetic and optical disks	 tapes	 print

ers	 processors	 CDROMs	 scanners	 medium changers	 and communications

devices�

In ����	 when the �rst SCSI standard was being �nalized as an American

National Standard	 several manufacturers approached the X
T��� Task Group�

They wanted to increase the mandatory requirements of SCSI and to de�ne

further features for directaccess devices� Rather than delay the SCSI standard	

X
T��� formed an ad hoc group to develop a working paper that was eventually

called the Common Command Set �CCS�� Many disk products were designed

using this working paper in conjunction with the SCSI standard�

In parallel with the development of the CCS working paper	 X
T��� began

work on an enhanced SCSI standard which was named SCSI�� SCSI� included

the results of the CCS working paper and extended them to all device types�

It also added caching commands	 performance enhancement features	 and other

functions that X
T��� deemed worthwhile� While SCSI� has gone well beyond

the original SCSI standard �now referred to as SCSI��	 it retains a high degree

of compatibility with SCSI� devices�

���
�� SCSI phases

The �SCSI bus� transfers data and state information between interconnected SCSI devices�

A single transaction between an �initiator� and a �target� can involve up to � distinct

�phases�� These phases are almost entirely determined by the target �e�g�	 the hard disk

drive�� The current phase can be determined from an examination of �ve SCSI bus signals	

as shown in Table ��� "LXT��	 p� ��#�

Some controllers �notably the inexpensive Seagate controller� require direct manipula

tion of the SCSI bus�other controllers automatically handle these lowlevel details� Each

of the eight phases will be described in detail�

��� Writing a SCSI Device Driver ��

SEL BSY MSG C�D I�O PHASE

HI HI � � � BUS FREE

HI LO � � � ARBITRATION

I I$T � � � SELECTION

T I$T � � � RESELECTION

HI LO HI HI HI DATA OUT

HI LO HI HI LO DATA IN

HI LO HI LO HI COMMAND

HI LO HI LO LO STATUS

HI LO LO LO HI MESSAGE OUT

HI LO LO LO LO MESSAGE IN

I � Initiator Asserts� T � Target Asserts� � � HI or LO

Table ���� SCSI Bus Phase Determination

BUS FREE Phase

The BUS FREE phase indicates that the SCSI bus is idle and is not currently

being used�

ARBITRATION Phase

The ARBITRATION phase is entered when a SCSI device attempts to gain

control of the SCSI bus� Arbitration can start only if the bus was previously

in the BUS FREE phase� During arbitration	 the arbitrating device asserts

its SCSI ID on the DATA BUS� For example	 if the arbitrating device�s

SCSI ID is �	 then the device will assert �x��� If multiple devices attempt

simultaneous arbitration	 the device with the highest SCSI ID will win� Al

though ARBITRATION is optional in the SCSI� standard	 it is a required

phase in the SCSI� standard�

SELECTION Phase

After ARBITRATION	 the arbitrating device �now called the initiator� as

serts the SCSI ID of the target on the DATA BUS� The target	 if present	

will acknowledge the selection by raising the BSY line� This line remains

active as long as the target is connected to the initiator�

RESELECTION Phase

The SCSI protocol allows a device to disconnect from the bus while process

ing a request� When the device is ready	 it reconnects to the host adapter�

The RESELECTION phase is identical to the SELECTION phase	 with the

��� Writing a SCSI Device Driver ��

exception that it is used by the disconnected target to reconnect to the origi

nal initiator� Drivers which do not currently support RESELECTION do not

allow the SCSI target to disconnect� RESELECTION should be supported

by all drivers	 however	 so that multiple SCSI devices can simultaneously

process commands� This allows dramatically increased throughput due to

interleaved I�O requests�

COMMAND Phase

During this phase	 �	 ��	 or �� bytes of command information are transferred

from the initiator to the target�

DATA OUT and DATA IN Phases

During these phases	 data are transferred between the initiator and the tar

get� For example	 the DATAOUT phase transfers data from the host adapter

to the disk drive� The DATA IN phase transfers data from the disk drive to

the host adapter� If the SCSI command does not require data transfer	 then

neither phase is entered�

STATUS Phase

This phase is entered after completion of all commands	 and allows the target

to send a status byte to the initiator� There are nine valid status bytes	 as

shown in Table ��� "ANS	 p� ��#� Note that since bits� ��� are used for the

status code �the other bits are reserved�	 the status byte should be masked

with �x�e before being examined�

The meanings of the three most important status codes are outlined below�

GOOD The operation completed successfully�

CHECK CONDITION

An error occurred� The REQUEST SENSE command should

be used to �nd out more information about the error �see sec

tion ����
��

BUSY The device was unable to accept a command� This may occur

during a selftest or shortly after powerup�

MESSAGE OUT and MESSAGE IN Phases

Additional information is transferred between the target and the initiator�

This information may regard the status of an outstanding command	 or

�Bit is the least signi�cant bit�

��� Writing a SCSI Device Driver ��

Valuey Status

�x�� GOOD

�x�� CHECK CONDITION

�x�� CONDITION MET

�x�� BUSY

�x�� INTERMEDIATE

�x�� INTERMEDIATECONDITION MET

�x�� RESERVATION CONFLICT

�x�� COMMAND TERMINATED

�x�� QUEUE FULL
y After masking with x�e

Table ���� SCSI Status Codes

may be a request for a change of protocol� Multiple MESSAGE IN and

MESSAGE OUT phases may occur during a single SCSI transaction� If

RESELECTION is supported	 the driver must be able to correctly process

the SAVE DATA POINTERS	 RESTORE POINTERS	 and DISCONNECT

messages� Although required by the SCSI� standard	 some devices do not

automatically send a SAVE DATA POINTERS message prior to a DISCON

NECT message�

����� SCSI Commands

Each SCSI command is �	 ��	 or �� bytes long� The following commands must be well

understood by a SCSI driver developer�

REQUEST SENSE

Whenever a command returns a CHECK CONDITION status	 the high

level Linux SCSI code automatically obtains more information about the

error by executing the REQUEST SENSE� This command returns a sense

key and a sense code �called the �additional sense code	� or ASC	 in the

SCSI� standard "ANS#�� Some SCSI devices may also report an �additional

sense code quali�er� �ASCQ�� The �� possible sense keys are described in

Table ��
� For information on the ASC and ASCQ	 please refer to the SCSI

standard "ANS# or to a SCSI device technical manual�

��� Writing a SCSI Device Driver ��

Sense Key Description

�x�� NO SENSE

�x�� RECOVERED ERROR

�x�� NOT READY

�x�� MEDIUM ERROR

�x�� HARDWARE ERROR

�x�� ILLEGAL REQUEST

�x�� UNIT ATTENTION

�x�� DATA PROTECT

�x�� BLANK CHECK

�x�� �Vendor speci�c error�

�x�a COPY ABORTED

�x�b ABORTED COMMAND

�x�c EQUAL

�x�d VOLUME OVERFLOW

�x�e MISCOMPARE

�x�f RESERVED

Table ��
� Sense Key Descriptions

��� Writing a SCSI Device Driver ��

TEST UNIT READY

This command is used to test the target�s status� If the target can accept a

mediumaccess command �e�g�	 a READ or a WRITE�	 the command returns

with a GOOD status� Otherwise	 the command returns with a CHECK

CONDITION status and a sense key of NOT READY� This response usually

indicates that the target is completing poweron selftests�

INQUIRY This command returns the target�s make	 model	 and device type� The high

level Linux code uses this command to di�erentiate among magnetic disks	

optical disks	 and tape drives �the highlevel code currently does not support

printers	 processors	 or juke boxes��

READ and WRITE

These commands are used to transfer data from and to the target� You

should be sure your driver can support simpler commands	 such as TEST

UNIT READY and INQUIRY	 before attempting to use the READ and

WRITE commands�

����� Getting Started

The author of a lowlevel device driver will need to have an understanding of how inter

ruptions are handled by the kernel� At minimum	 the kernel functions that disable �cli���

and enable �sti��� interruptions should be understood� The scheduling functions �e�g�	

schedule��	 sleepon��	 and wakeup��� may also be needed by some drivers� A detailed

explanation of these functions can be found in section ����

����� Before You Begin� Gathering Tools

Before you begin to write a SCSI driver for Linux	 you will need to obtain several resources�

The most important is a bootable Linux system�preferably one which boots from an

IDE	 RLL	 or MFM hard disk� During the development of your new SCSI driver	 you will

rebuild the kernel and reboot your system many times� Programming errors may result

in the destruction of data on your SCSI drive and on your nonSCSI drive� Back up your

system before you begin�

The installed Linux system can be quite minimal� the GCC compiler distribution �in

cluding libraries and the binary utilities�	 an editor	 and the kernel source are all you need�

Additional tools like od	 hexdump	 and less will be quite helpful� All of these tools will �t

��� Writing a SCSI Device Driver ��

on an inexpensive ��
� MB hard disk���

Documentation is essential� At minimum	 you will need a technical manual for your host

adapter� Since Linux is freely distributable	 and since you �ideally� want to distribute your

source code freely	 avoid nondisclosure agreements �NDA�� Most NDA�s will prohibit you

from releasing your source code�you might be allowed to release an object �le containing

your driver	 but this is simply not acceptable in the Linux community at this time�

A manual that explains the SCSI standard will be helpful� Usually the technical manual

for your disk drive will be su�cient	 but a copy of the SCSI standard will often be helpful��

Before you start	 make hard copies of hosts�h	 scsi�h	 and one of the existing drivers

in the Linux kernel� These will prove to be useful references while you write your driver�

����	 The Linux SCSI Interface

The highlevel SCSI interface in the Linux kernel manages all of the interaction between

the kernel and the lowlevel SCSI device driver� Because of this layered design	 a lowlevel

SCSI driver need only provide a few basic services to the highlevel code� The author of a

lowlevel driver does not need to understand the intricacies of the kernel I�O system and	

hence	 can write a lowlevel driver in a relatively short amount of time�

Two main structures �Scsi�Host and Scsi�Cmnd� are used to communicate between the

highlevel code and the lowlevel code� The next two sections provide detailed information

about these structures and the requirements of the lowlevel driver�

����� The Scsi Host Structure

The Scsi�Host structure serves to describe the lowlevel driver to the highlevel code�

Usually	 this description is placed in the device driver�s header �le in a C preprocessor

de�nition	 as shown in Figure ����

The Scsi�Host structure is presented in Figure ���� Each of the �elds will be explained

in detail later in this section�

�A used � MB MFM hard disk and controller should cost less than US���
�The October ��� ����� draft of the SCSI�� standard document is available via anonymous ftp

from sunsite�unc�edu in �pub�Linux�development�scsi���tar�Z� and is available for purchase from

Global Engineering Documents ���� McGaw� Irvine� CA ������� ������������ or ���������������

Please refer to document X���������X� In early ����� the manual cost US�����

��� Writing a SCSI Device Driver ��

	define FDOMAIN���X� �Future Domain TMC���x��� !

fdomain���x��detect� !

fdomain���x��info� !

fdomain���x��command� !

fdomain���x��queue� !

fdomain���x��abort� !

fdomain���x��reset� !

NULL� !

fdomain���x��biosparam� !

�� �� ��� � ��� �"

	endif

Figure ���� Device Driver Header File

typedef struct

char �name�

int �� detect��int��

const char ��� info��void��

int �� queuecommand��Scsi�Cmnd ��

void ��done��Scsi�Cmnd ����

int �� command��Scsi�Cmnd ���

int �� abort��Scsi�Cmnd �� int��

int �� reset��void��

int �� slave�attach��int� int��

int �� bios�param��int� int� int ���

int can�queue�

int this�id�

short unsigned int sg�tablesize�

short cmd�per�lun�

unsigned present���

unsigned unchecked�isa�dma���

" Scsi�Host�

Figure ���� The Scsi Host Structure

��� Writing a SCSI Device Driver ��

����� Variables in the Scsi Host structure

In general	 the variables in the Scsi�Host structure are not used until after the detect��

function �see section ���������� is called� Therefore	 any variables which cannot be assigned

before host adapter detection should be assigned during detection� This situation might

occur	 for example	 if a single driver provided support for several host adapters with very

similar characteristics� Some of the parameters in the Scsi�Host structure might then

depend on the speci�c host adapter detected�

������� name

name holds a pointer to a short description of the SCSI host adapter�

������
 can queue

can�queue holds the number of outstanding commands the host adapter can process� Unless

RESELECTION is supported by the driver and the driver is interruptdriven		 this variable

should be set to ��

������� this id

Most host adapters have a speci�c SCSI ID assigned to them� This SCSI ID	 usually � or

�	 is used for RESELECTION� The this�id variable holds the host adapter�s SCSI ID� If

the host adapter does not have an assigned SCSI ID	 this variable should be set to �� �in

this case	 RESELECTION cannot be supported��

������	 sg tablesize

The highlevel code supports �scattergather	� a method of increasing SCSI throughput by

combining many small SCSI requests into a few large SCSI requests� Since most SCSI disk

drives are formatted with ��� interleave	�
 the time required to perform the SCSI ARBI

TRATION and SELECTION phases is longer than the rotational latency time between

	Some of the early Linux drivers were not interrupt driven and� consequently� had very poor

performance�
�
	��� interleave
 means that all of the sectors in a single track appear consecutively on the disk

surface�

��� Writing a SCSI Device Driver ��

sectors��� Therefore	 only one SCSI request can be processed per disk revolution	 result

ing in a throughput of about �� kilobytes per second� When scattergather is supported	

however	 average throughput is usually over ��� kilobytes per second�

The sg�tablesize variable holds the maximum allowable number of requests in the

scattergather list� If the driver does not support scattergather	 this variable should be

set to SG�NONE� If the driver can support an unlimited number of grouped requests	 this

variable should be set to SG�ALL� Some drivers will use the host adapter to manage the

scattergather list and may need to limit sg�tablesize to the number that the host adapter

hardware supports� For example	 some Adaptec host adapters require a limit of ���

������� cmd per lun

The SCSI standard supports the notion of �linked commands�� Linked commands allow

several commands to be queued consecutively to a single SCSI device� The cmd�per�lun

variable speci�es the number of linked commands allowed� This variable should be set to �

if command linking is not supported� At this time	 however	 the highlevel SCSI code will

not take advantage of this feature�

Linked commands are fundamentally di�erent from multiple outstanding commands �as

described by the can�queue variable�� Linked commands always go to the same SCSI target

and do not necessarily involve a RESELECTION phase� Further	 linked commands elim

inate the ARBITRATION	 SELECTION	 and MESSAGE OUT phases on all commands

after the �rst one in the set� In contrast	 multiple outstanding commands may be sent to an

arbitrary SCSI target	 and require the ARBITRATION	 SELECTION	 MESSAGE OUT	

and RESELECTION phases�

������� present

The present bit is set �by the highlevel code� if the host adapter is detected�

������ unchecked isa dma

Some host adapters use Direct Memory Access �DMA� to read and write blocks of data

directly from or to the computer�s main memory� Linux is a virtual memory operating

��This may be an over�simpli�cation� On older devices� the actual command processing can be

signi�cant� Further� there is a great deal of layered overhead in the kernel� the high�level SCSI code�

the bu�ering code� and the �le�system code all contribute to poor SCSI performance�

��� Writing a SCSI Device Driver �

system that can use more than �� MB of physical memory� Unfortunately	 on machines

using the ISA bus��	 DMA is limited to the low �� MB of physical memory�

If the unchecked�isa�dma bit is set	 the highlevel code will provide data bu�ers which

are guaranteed to be in the low �� MB of the physical address space� Drivers written for

host adapters that do not use DMA should set this bit to zero� Drivers speci�c to EISA

bus�� machines should also set this bit to zero	 since EISA bus machines allow unrestricted

DMA access�

����
 Functions in the Scsi Host Structure

����
�� detect��

The detect�� function�s only argument is the �host number	� an index into the scsi�hosts

variable �an array of type struct Scsi�Host�� The detect�� function should return a non

zero value if the host adapter is detected	 and should return zero otherwise�

Host adapter detection must be done carefully� Usually the process begins by looking

in the ROM area for the �BIOS signature� of the host adapter� On PC�ATcompatible

computers	 the use of the address space between �xc���� and �xfffff is fairly well de

�ned� For example	 the video BIOS on most machines starts at �xc���� and the hard disk

BIOS	 if present	 starts at �xc����� When a PC�ATcompatible computer boots	 every

�kilobyte block from �xc���� to �xf���� is examined for the �byte signature ��x��aa�

which indicates that a valid BIOS extension is present "Nor��#�

The BIOS signature usually consists of a series of bytes that uniquely identi�es the

BIOS� For example	 one Future Domain BIOS signature is the string

FUTURE DOMAIN CORP� �C� ��������� �����V����������

found exactly �ve bytes from the start of the BIOS block�

After the BIOS signature is found	 it is safe to test for the presence of a functioning host

adapter in more speci�c ways� Since the BIOS signatures are hardcoded in the kernel	 the

release of a new BIOS can cause the driver to mysteriously fail� Further	 people who use

the SCSI adapter exclusively for Linux may want to disable the BIOS to speed boot time�

��The so�called 	Industry Standard Architecture
 bus was introduced with the IBM PC�XT and

IBM PC�AT computers�
��The 	Extended Industry Standard Architecture
 bus is a non�proprietary ���bit bus for ��� and

i��� machines�

��� Writing a SCSI Device Driver ��

For these reasons	 if the adapter can be detected safely without examining the BIOS	 then

that alternative method should be used�

Usually	 each host adapter has a series of I�O port addresses which are used for commu

nications� Sometimes these addresses will be hard coded into the driver	 forcing all Linux

users who have this host adapter to use a speci�c set of I�O port addresses� Other drivers

are more �exible	 and �nd the current I�O port address by scanning all possible port ad

dresses� Usually each host adapter will allow
 or � sets of addresses	 which are selectable

via hardware jumpers on the host adapter card�

After the I�O port addresses are found	 the host adapter can be interrogated to con�rm

that it is	 indeed	 the expected host adapter� These tests are host adapter speci�c	 but

commonly include methods to determine the BIOS base address �which can then be com

pared to the BIOS address found during the BIOS signature search� or to verify a unique

identi�cation number associated with the board� For MCA bus�� machines	 each type of

board is given a unique identi�cation number which no other manufacturer can use�several

Future Domain host adapters	 for example	 also use this number as a unique identi�er on

ISA bus machines� Other methods of verifying the host adapter existence and function will

be available to the programmer�

����
���� Requesting the IRQ

After detection	 the detect�� routine must request any needed interrupt or DMA channels

from the kernel� There are �� interrupt channels	 labeled IRQ � through IRQ ��� The kernel

provides two methods for setting up an IRQ handler� irqaction�� and request�irq���

The request�irq�� function takes two parameters	 the IRQ number and a pointer to

the handler routine� It then sets up a default sigaction structure and calls irqaction���

The code�� for the request�irq�� function is shown in Figure ��
� I will limit my discussion

to the more general irqaction�� function�

The declaration�� for the irqaction�� function is

int irqaction� unsigned int irq� struct sigaction �new �

where the �rst parameter	 irq	 is the number of the IRQ that is being requested	 and the

��The 	Micro�Channel Architecture
 bus is IBM�s proprietary �� bit bus for ��� and i���

machines�
��Linux ����� kernel source code� linux�kernel�irq�c
��Linux ����� kernel source code� linux�kernel�irq�c

��� Writing a SCSI Device Driver ��

int request�irq� unsigned int irq� void ��handler�� int � �

struct sigaction sa�

sa�sa�handler � handler�

sa�sa�flags � ��

sa�sa�mask � ��

sa�sa�restorer � NULL�

return irqaction� irq� �sa ��

"

Figure ��
� The request irq�� Function

second parameter	 new	 is a structure with the de�nition�� shown in Figure ����

struct sigaction

��sighandler�t sa�handler�

sigset�t sa�mask�

int sa�flags�

void ��sa�restorer��void��

"�

Figure ���� The sigaction Structure

In this structure	 sa�handler should point to your interrupt handler routine	 which

should have a de�nition similar to the following�

void fdomain���x��intr� int irq �

where irq will be the number of the IRQ which caused the interrupt handler routine to be

invoked�

��Linux ����� kernel source code� linux�include�linux�signal�h

��� Writing a SCSI Device Driver ��

The sa�mask variable is used as an internal �ag by the irqaction�� routine� Tradi

tionally	 this variable is set to zero prior to calling irqaction���

The sa�flags variable can be set to zero or to SA�INTERRUPT� If zero is selected	 the

interrupt handler will run with other interrupts enabled	 and will return via the signal

handling return functions� This option is recommended for relatively slow IRQ�s	 such as

those associated with the keyboard and timer interrupts� If SA�INTERRUPT is selected	 the

handler will be called with interrupts disabled and return will avoid the signalhandling

return functions� SA�INTERRUPT selects �fast� IRQ handler invocation routines	 and is

recommended for interrupt driven hard disk routines� The interrupt handler should turn

interrupts on as soon as possible	 however	 so that other interrupts can be processed�

The sa�restorer variable is not currently used	 and is traditionally set to NULL�

The request�irq�� and irqaction�� functions will return zero if the IRQ was suc

cessfully assigned to the speci�ed interrupt handler routine� Nonzero result codes may be

interpreted as follows�

�EINVAL Either the IRQ requested was larger than ��	 or a NULL pointer was passed

instead of a valid pointer to the interrupt handler routine�

�EBUSY The IRQ requested has already been allocated to another interrupt han

dler� This situation should never occur	 and is reasonable cause for a call to

panic���

The kernel uses an Intel �interrupt gate� to set up IRQ handler routines requested via

the irqaction�� function� The Intel i��� manual "Int��	 p� ���# explains the interrupt

gate as follows�

Interrupts using� � � interrupt gates� � �cause the TF �ag "trap �ag# to be

cleared after its current value is saved on the stack as part of the saved contents

of the EFLAGS register� In so doing	 the processor prevents instruction tracing

from a�ecting interrupt response� A subsequent IRET "interrupt return# in

struction restores the TF �ag to the value in the saved contents of the EFLAGS

register on the stack�

� � � An interrupt which uses an interrupt gate clears the IF �ag "interrupt

enable �ag#	 which prevents other interrupts from interfering with the current

interrupt handler� A subsequent IRET instruction restores the IF �ag to the

value in the saved contents of the EFLAGS register on the stack�

��� Writing a SCSI Device Driver ��

����
�
 Requesting the DMA channel

Some SCSI host adapters use DMA to access large blocks of data in memory� Since the

CPU does not have to deal with the individual DMA requests	 data transfers are faster

than CPUmediated transfers and allow the CPU to do other useful work during a block

transfer �assuming interrupts are enabled��

The host adapter will use a speci�c DMA channel� This DMA channel will be determined

by the detect�� function and requested from the kernel with the request�dma�� function�

This function takes the DMA channel number as its only parameter and returns zero if the

DMA channel was successfully allocated� Nonzero results may be interpreted as follows�

�EINVAL The DMA channel number requested was larger than ��

�EBUSY The requested DMA channel has already been allocated� This is a very

serious situation	 and will probably cause any SCSI requests to fail� It is

worthy of a call to panic���

����
�� info��

The info�� function merely returns a pointer to a static area containing a brief description

of the lowlevel driver� This description	 which is similar to that pointed to by the name

variable	 will be printed at boot time�

����
�	 queuecommand��

The queuecommand�� function sets up the host adapter for processing a SCSI command

and then returns� When the command is �nished	 the done�� function is called with

the Scsi�Cmnd structure pointer as a parameter� This allows the SCSI command to be

executed in an interruptdriven fashion� Before returning	 the queuecommand�� function

must do several things�

�� Save the pointer to the Scsi�Cmnd structure�

�� Save the pointer to the done�� function in the scsi�done�� function pointer in the

Scsi�Cmnd structure� See section ��������� for more information�

� Set up the special Scsi�Cmnd variables required by the driver� See section ����� for

detailed information on the Scsi�Cmnd structure�

��� Writing a SCSI Device Driver ��

�� Start the SCSI command� For an advanced host adapter	 this may be as simple as

sending the command to a host adapter �mailbox�� For less advanced host adapters	

the ARBITRATION phase is manually started�

The queuecommand�� function is called only if the can�queue variable �see sec

tion ���������� is nonzero� Otherwise the command�� function is used for all SCSI requests�

The queuecommand�� function should return zero on success �the current highlevel SCSI

code presently ignores the return value��

����
�� done��

The done�� function is called after the SCSI command completes� The single parameter

that this command requires is a pointer to the same Scsi�Cmnd structure that was previously

passed to the queuecommand�� function� Before the done�� function is called	 the result

variable must be set correctly� The result variable is a
� bit integer	 each byte of which

has speci�c meaning�

Byte � �LSB� This byte contains the SCSI STATUS code for the command	 as described

in section ��������

Byte � This byte contains the SCSI MESSAGE	 as described in section ��������

Byte � This byte holds the host adapter�s return code� The valid codes for this byte

are given in scsi�h and are described below�

DID OK No error�

DID NO CONNECT

SCSI SELECTION failed because there was no device at the

address speci�ed�

DID BUS BUSY

SCSI ARBITRATION failed�

DID TIME OUT

A timeout occurred for some unknown reason	 probably dur

ing SELECTION or while waiting for RESELECTION�

��� Writing a SCSI Device Driver ��

DID BAD TARGET

The SCSI ID of the target was the same as the SCSI ID of

the host adapter�

DID ABORT The highlevel code called the lowlevel abort�� function �see

section �����������

DID PARITY A SCSI PARITY error was detected�

DID ERROR An error occurred which lacks a more appropriate error code

�for example	 an internal host adapter error��

DID RESET The highlevel code called the lowlevel reset�� function �see

section �����������

DID BAD INTR

An unexpected interrupt occurred and there is no appropri

ate way to handle this interrupt�

Note that returning DID�BUS�BUSY will force the command to be retried	

whereas returning DID�NO�CONNECT will abort the command�

Byte
 �MSB�

This byte is for a highlevel return code	 and should be left as zero by the

lowlevel code�

Current lowlevel drivers do not uniformly �or correctly� implement error reporting	 so

it may be better to consult scsi�c to determine exactly how errors should be reported	

rather than exploring existing drivers�

����
�� command��

The command�� function processes a SCSI command and returns when the command is

�nished� When the original SCSI code was written	 interruptdriven drivers were not sup

ported� The old drivers are much less e�cient �in terms of response time and latency� than

the current interruptdriven drivers	 but are also much easier to write� For new drivers	 this

command can be replaced with a call to the queuecommand�� function	 as demonstrated in

Figure ������

��Linux ����� kernel� linux�kernel�blk drv�scsi�aha�	
��c� written by Tommy Thorn�

��� Writing a SCSI Device Driver ��

static volatile int internal�done�flag � ��

static volatile int internal�done�errcode � ��

static void internal�done� Scsi�Cmnd �SCpnt �

internal�done�errcode � SCpnt��result�

##internal�done�flag�

"

int aha�����command� Scsi�Cmnd �SCpnt �

aha�����queuecommand� SCpnt� internal�done ��

while ��internal�done�flag��

internal�done�flag � ��

return internal�done�errcode�

"

Figure ���� Example command�� Function

��� Writing a SCSI Device Driver ��

The return value is the same as the result variable in the Scsi�Cmnd structure� Please

see sections ��������� and ����� for more details�

����
� abort��

The highlevel SCSI code handles all timeouts� This frees the lowlevel driver from having

to do timing	 and permits di�erent timeout periods to be used for di�erent devices �e�g�	

the timeout for a SCSI tape drive is nearly in�nite	 whereas the timeout for a SCSI disk

drive is relatively short��

The abort�� function is used to request that the currently outstanding SCSI command	

indicated by the Scsi�Cmnd pointer	 be aborted� After setting the result variable in the

Scsi�Cmnd structure	 the abort�� function returns zero� If code	 the second parameter to

the abort�� function	 is zero	 then result should be set to DID�ABORT� Otherwise	 result

shoudl be set equal to code� If code is not zero	 it is usually DID�TIME�OUT or DID�RESET�

Currently	 none of the lowlevel drivers is able to correctly abort a SCSI command� The

initiator should request �by asserting the �ATN line� that the target enter a MESSAGE OUT

phase� Then	 the initiator should send an ABORT message to the target�

����
�� reset��

The reset�� function is used to reset the SCSI bus� After a SCSI bus reset	 any executing

command should fail with a DID�RESET result code �see section �����������

Currently	 none of the lowlevel drivers handles resets correctly� To correctly reset a

SCSI command	 the initiator should request �by asserting the �ATN line� that the target

enter a MESSAGE OUT phase� Then	 the initiator should send a BUS DEVICE RESET

message to the target� It may also be necessary to initiate a SCSI RESET by asserting the

�RST line	 which will cause all target devices to be reset� After a reset	 it may be necessary

to renegotiate a synchronous communications protocol with the targets�

����
�� slave attach��

The slave attach�� function is not currently implemented� This function would be used

to negotiate synchronous communications between the host adapter and the target drive�

This negotiation requires an exchange of a pair of SYNCHRONOUS DATA TRANSFER

REQUEST messages between the initiator and the target� This exchange should occur

under the following conditions "LXT��#�

��� Writing a SCSI Device Driver ��

A SCSI device that supports synchronous data transfer recognizes it has

not communicated with the other SCSI device since receiving the last �hard�

RESET�

A SCSI device that supports synchronous data transfer recognizes it has

not communicated with the other SCSI device since receiving a BUS DEVICE

RESET message�

����
��� bios param��

Linux supports the MSDOS�	 hard disk partitioning system� Each disk contains a �par

tition table� which de�nes how the disk is divided into logical sections� Interpretation of

this partition table requires information about the size of the disk in terms of cylinders	

heads	 and sectors per cylinder� SCSI disks	 however	 hide their physical geometry and are

accessed logically as a contiguous list of sectors� Therefore	 in order to be compatible with

MSDOS	 the SCSI host adapter will �lie� about its geometry� The physical geometry of

the SCSI disk	 while available	 is seldom used as the �logical geometry�� �The reasons for

this involve archaic and arbitrary limitations imposed by MSDOS��

Linux needs to determine the �logical geometry� so that it can correctly modify and

interpret the partition table� Unfortunately	 there is no standard method for converting

between physical and logical geometry� Hence	 the bios param�� function was introduced

in an attempt to provide access to the host adapter geometry information�

The size parameter is the size of the disk in sectors� Some host adapters use a deter

ministic formula based on this number to calculate the logical geometry of the drive� Other

host adapters store geometry information in tables which the driver can access� To facilitate

this access	 the dev parameter contains the drive�s device number� Two macros are de�ned

in linux�fs�h which will help to interpret this value� MAJOR�dev� is the device�s major

number	 and MINOR�dev� is the device�s minor number� These are the same major and

minor device numbers used by the standard Linux mknod command to create the device

in the �dev directory� The info parameter points to an array of three integers that the

bios�param�� function will �ll in before returning�

info�� Number of heads

info�� Number of sectors per cylinder

info�� Number of cylinders

The information in info is not the physical geometry of the drive	 but only a logical

�	MS�DOS is a registered trademark of Microsoft Corporation�

��� Writing a SCSI Device Driver �

geometry that is identical to the logical geometry used by MSDOS to access the drive� The

distinction between physical and logical geometry cannot be overstressed�

���� The Scsi Cmnd Structure

The Scsi�Cmnd structure	�
 as shown in Figure ���	 is used by the highlevel code to specify

a SCSI command for execution by the lowlevel code� Many variables in the Scsi�Cmnd

structure can be ignored by the lowlevel device driver�other variables	 however	 are ex

tremely important�

������ Reserved Areas

�������� Informative Variables

host is an index into the scsi�hosts array�

target stores the SCSI ID of the target of the SCSI command� This information is im

portant if multiple outstanding commands or multiple commands per target are supported�

cmnd is an array of bytes which hold the actual SCSI command� These bytes should

be sent to the SCSI target during the COMMAND phase� cmnd�� is the SCSI command

code� The COMMAND�SIZE macro	 de�ned in scsi�h	 can be used to determine the length of

the current SCSI command�

result is used to store the result code from the SCSI request� Please see section ���������

for more information about this variable� This variable must be correctly set before the

lowlevel routines return�

�������
 The Scatter�Gather List

use�sg contains a count of the number of pieces in the scattergather chain� If use�sg

is zero	 then request�buffer points to the data bu�er for the SCSI command	 and

request�bufflen is the length of this bu�er in bytes� Otherwise	 request�buffer points

to an array of scatterlist structures	 and use�sg will indicate how many such structures

are in the array� The use of request�buffer is nonintuitive and confusing�

Each element of the scatterlist array contains an address and a length component�

If the unchecked�isa�dma �ag in the Scsi�Host structure is set to � �see section ���������

for more information on DMA transfers�	 the address is guaranteed to be within the �rst

�� MB of physical memory� Large amounts of data will be processed by a single SCSI

�
Linux ����� kernel� linux�kernel�blk drv�scsi�scsi�h

��� Writing a SCSI Device Driver ��

typedef struct scsi�cmnd

int host�

unsigned char target�

lun�

index�

struct scsi�cmnd �next�

�prev�

unsigned char cmnd����

unsigned request�bufflen�

void �request�buffer�

unsigned char data�cmnd����

unsigned short use�sg�

unsigned short sglist�len�

unsigned bufflen�

void �buffer�

struct request request�

unsigned char sense�buffer����

int retries�

int allowed�

int timeout�per�command�

timeout�total�

timeout�

unsigned char internal�timeout�

unsigned flags�

void ��scsi�done��struct scsi�cmnd ���

void ��done��struct scsi�cmnd ���

Scsi�Pointer SCp�

unsigned char �host�scribble�

int result�

" Scsi�Cmnd�

Figure ���� The Scsi Cmnd Structure

��� Writing a SCSI Device Driver ��

command� The length of these data will be equal to the sum of the lengths of all the bu�ers

pointed to by the scatterlist array�

�����
 Scratch Areas

Depending on the capabilities and requirements of the host adapter	 the scattergather list

can be handled in a variety of ways� To support multiple methods	 several scratch areas

are provided for the exclusive use of the lowlevel driver�

�����
�� The scsi done�� Pointer

This pointer should be set to the done�� function pointer in the queuecommand�� function

�see section ��������� for more information�� There are no other uses for this pointer�

�����
�
 The host scribble Pointer

The highlevel code supplies a pair of memory allocation functions	 scsi�malloc�� and

scsi�free��	 which are guaranteed to return memory in the �rst �� MB of physical mem

ory� This memory is	 therefore	 suitable for use with DMA� The amount of memory allo

cated per request must be a multiple of ��� bytes	 and must be less than or equal to ����

bytes� The total amount of memory available via scsi�malloc�� is a complex function of

the Scsi�Host structure variables sg�tablesize	 cmd�per�lun	 and unchecked�isa�dma�

The host�scribble pointer is available to point to a region of memory allocated with

scsi�malloc��� The lowlevel SCSI driver is responsible for managing this pointer and its

associated memory	 and should free the area when it is no longer needed�

�����
�� The Scsi Pointer Structure

The SCp variable	 a structure of type Scsi�Pointer	 is described in Figure ���� The vari

ables in this structure can be used in any way necessary in the lowlevel driver� Typically	

buffer points to the current entry in the scatterlist	 buffers�residual counts the

number of entries remaining in the scatterlist	 ptr is used as a pointer into the bu�er	

and this�residual counts the characters remaining in the transfer� Some host adapters

require support of this detail of interaction�others can completely ignore this structure�

The second set of variables provide convenient locations to store SCSI status information

and various pointers and �ags�

���� Acknowledgements ��

typedef struct scsi�pointer

char �ptr� �� data pointer ��

int this�residual� �� left in this buffer ��

struct scatterlist �buffer� �� which buffer ��

int buffers�residual� �� how many buffers left ��

volatile int Status�

volatile int Message�

volatile int have�data�in�

volatile int sent�command�

volatile int phase�

" Scsi�Pointer�

Figure ���� The Scsi Pointer Structure

��� Acknowledgements

Thanks to Drew Eckhardt	 Michael K� Johnson	 Karin Boes	 Devesh Bhatnagar	 and Doug

Ho�man for reading early versions of this paper and for providing many helpful comments�

Special thanks to my o�cial COMP��� �Professional Writing in Computer Science� �read

ers	� Professors Peter Calingaert and Raj Kumar Singh�

�� Network Device Drivers

�I have not written this section because I don�t know anything about it� I would

appreciate help with this�

Note that Donald Becker has written an excellent skeleton device driver

which is a very good start towards writing a network device driver��

Chapter �

The �proc �lesystem

The proc �lesystem is an interface to several kernel data structures which behaves remark

ably like a �lesystem� Instead of having to read �dev�kmem and have some way of knowing

where things are	� all an application has to do is read �les and directories in �proc� This

way	 all the addresses of the kernel data structures are compiled into the proc �lesystem at

kernel compile time	 and programs which use the �proc interface need not be recompiled or

updated when the kernel is recompiled� It is possible to mount the proc �lesystem some

where other than �proc	 but that destroys the nice predictablity of the proc �lesystem	 so

we will conveniently ignore that option� The information should somewhat resemble Linux

����

��� �proc Directories and Files

�This section should be severly cut� and the full version put in the LPG when

that is available� In the mean time� better here than nowhere��

In �proc	 there is a subdirectory for every running process	 named by the number of the

process�s pid� These directories will be explained below� There are also several other �les

and directories� These are�

self This refers to the process accessing the proc �lesystem	 and is identical to

the directory named by the process id of the process doing the lookup�

kmsg This �le can be used instead of the syslog�� system call to log kernel mes

sages� A process must have superuser priviledges to read this �le	 and only

one process should read this �le� This �le should not be read if a syslog

�Usually a �le called a namelist �le� often �etc�psdatabase�

��

��� �proc Directories and Files ��

process is running which uses the syslog�� system call facility to log kernel

messages�

loadavg This �le gives an output like this�

�!�	 �!�� �!��

These numbers are the numbers normally given by uptime and other com

mands as the load average�they are the average number of processes trying

to run at once in the last minute	 in the last �ve minutes and in the last

�fteen minutes	 more or less�

meminfo This �le is a condensed version of the output from the free program� Its

output looks like this�

total� used� free� shared� buffers�

Mem� #��$��$ #	����$ �$�	�� �%	#$�� �&�&%&%

Swap� $����%� ��#��%� %��&���

Notice that the numbers are in bytes	 not KB� Linus wrote a version of

free which reads this �le and can return either bytes ��b� or KB ��k	 the

default�� This is included with the procps package at tsx����mit�edu and

other places� Also notice that there is not a seperate entry for each swap

�le� the Swap� line sumarizes all the swap space available to the kernel�

uptime This �le contains two things� the time that the system has been up	 and the

amount of time it has spent in the idle process� Both numbers are given as

decimal quantities	 in seconds and hundreths of a second� The two decimal

digits of precision are not guaranteed on all architectures	 but are currently

accurate on all working implementations of Linux	 due to the convenient ���

Hz clock� This �le looks like this�

%��!		 ���!��

In this case	 the system has been running for ����

 seconds	 and of that

time	 ������ seconds have been spent in the idle task�

kcore This is a �le which represents the physical memory in the current system	

in the same format as a �core �le�� This can be used with a debugger to

examine variables in the kernel� The total length of the �le is the physical

memory plus a �KB header to make it look like a core �le�

stat The stat �le return various statistics about the system in ascii format� An

example of stat �le is the following�

��� �proc Directories and Files ��

cpu ��#� � 	#%� �&	#&�

disk � � � �

page ���$� &	#

swap ��� %�$

intr �	&&#$

ctxt ��&	�

btime #%#$�$�$&

The meaning of the lines being

cpu The four numbers represent the number of ji�es the system

spent in user mode	 in user mode with low priority �nice�	 in

system mode	 and in the idle task� The last value should be

��� times the second entry in the uptime �le�

disk The four dk drive entries in the kernel stat structure are

currently unused�

page This is the number of pages the system brought in from the

disk and out to the disk�

swap Is the number of swap pages the system brought in and out�

intr The number of interrupts received from system boot� �The

format of this line has changed in more recent ker�

nels��

ctxt The number of context switches the system underwent�

btime The boot time	 in seconds since the epoch�

modules This return the list of kernel modules	 in ascii form� The format is not well

de�ned at this point	 as it has changed from version to version� This will

stabilize with later versions of Linux as the modules interface stabilizes�

malloc This �le is present only if CONFIG DEBUG MALLOC was de�ned during kernel

compilation�

version This �le contains a string identifying the version of Linux that is currently

running� An example is�

Linux version �!�!��
johnsonm'nigel
gcc version �!�!$ "	 Sat Aug % �������

Note that this contains the version of Linux	 the username and hostname of

��� �proc Directories and Files ��

the user that compiled it	 the version of gcc	 the �iteration� of the compi

lation �each new compile will increase the number�	 and the output of the

�date� command as of the start of the compilation�

net This is a directory containing three �les	 all of which give the status of some

part of the Linux networking layer� These �les contain binary structures	

and are therefore not readable with cat� However	 the standard netstat suite

uses these �les� The binary structures read from these �les are de�ned in

linux�if��h� The �les are�

unix �I do not yet have details on the unix interface� These

details will be added later��

arp �I do not yet have details on the arp interface� These

details will be added later��

route �I do not yet have details on the route interface�

These details will be added later��

dev �I do not yet have details on the dev interface� These

details will be added later��

raw �I do not yet have details on the raw interface� These

details will be added later��

tcp �I do not yet have details on the tcp interface� These

details will be added later��

udp �I do not yet have details on the udp interface� These

details will be added later��

Each of the process subdirectories �those with numerical names and the self directory� have

several �les and subdirectories	 as well� The �les are�

cmdline This holds the complete command line for the process	 unless the whole

process has been swapped out� or unless the process is a zombie� In

either of these later cases	 there is nothing in this �le� i�e� a read on this �le

will return as having read � characters� This �le is nullterminated	 but not

newlineterminated�

cwd A link to the current working directory of that process� To �nd out the cwd

of process ��	 say	 you can do this�

��� �proc Directories and Files ��

cd �proc����cwd� pwd

environ This �le contains the environment for the process� There are no newlines

in this �le� the entries are seperated by null characters	 and there is a null

character at the end� Thus	 to print out the environment of process ��	 you

would do�

cat �proc����environ � tr ������ ��n�

This �le is also nullterminated and not newline terminated��

exe This is a link to the executable� You can type

�proc����exe

to run another copy of whatever process �� is�

fd This is a subdirectory containing one entry for each �le which the process

has open	 named by its �le descripter	 and which is a link to the actual �le�

Programs that will take a �lename	 but will not take the standard input	

and which write to a �le	 but will not send their output to standard output	

can be e�ectively foiled this way	 assuming that �i is the �ag designating

an input �le and �o is the �ag designating an output �le�

!!! � foobar �i �proc�self�fd�� �o �proc�self�fd�� � !!!

Voil�a� Instant �lter! Note that this will not work for programs that seek on

their �les	 as the �les in the fd directory are not seekable�

maps This is a �le which contains a listing of all the memory mappings that the

process is using� The shared libraries are mapped in this way	 so there should

be one entry for each shared library in use	 and some processes use memory

maps for other purposes as well� Here is an example�

�������������	��� r�xs �������� �	��	 ���%�

����	������������ rwxp ����	��� �	��	 ���%�

�������������c��� rwxp �������� ����� �

bffff����c������� rwxp �������� ����� �

The �rst �eld is a number de�ning the start of the mapped range�

the second �eld is a number de�ning the end of the mapped range�

The third �eld gives the �ags�

r means readable	 � means not�

w means writeable	 � means not�

x means executable	 � means not�

��� �proc Directories and Files ��

s means shared	 p means private�

The fourth �eld is the o�set at which it is mapped�

The �fth �eld indicates the major�minor device number of the �le being

mapped�

The sixth �eld indicates the inode number of the �le being mapped�

mem This is not the same as the mem ��	�� device	 despite the fact that it has the

same device numbers� The �dev�mem device is the physical memory before

any address translation is done	 but the mem �le here is the memory of the

process that accesses it� This cannot be mmap��ed currently	 and will not be

until a general mmap�� is added to the kernel�

root This is a pointer to the root directory of the process� This is useful for

programs that call chroot��	 such as ftpd�

stat This �le contains a lot of status information about the process� The �elds	

in order	 with their proper scanf�� format speci�ers	 are�

pid �d The process id�

comm ��s� The �lename of the executable	 in parentheses� This is visible

whether or not the executable is swapped out�

state �c One character from the string �RSDZT� where R is running	

S is sleeping in an interruptable wait	 D is sleeping in an un

interruptable wait or swapping	 Z is zombie	 and T is traced

or stopped �on a signal��

ppid �d The pid of the parent�

pgrp �d The pgrp of the process�

session �d The session id of the process�

tty �d The tty the process uses�

tpgid �d The pgrp of the process which currently owns the tty that

the process is connected to�

�ags �u The �ags of the process� Currently	 every �ag has the math

bit set	 because crt��s checks for math emulation	 so this is

not included in the output� This is probably a bug	 as not

every process is a compiled c program� The math bit should

��� �proc Directories and Files �

be a decimal �	 and the traced bit is decimal ���

min �t �u The number of minor faults the process has made	 those

which have not required loading a memory page from disk�

cmin �t �u The number of minor faults that the process and its children

have made�

maj �t �u The number of major faults the process has made	 those

which have required loading a memory page from disk�

cmaj �t �u The number of major faults that the process and its children

have made�

utime �d The number of ji�es that this process has been scheduled in

user mode�

stime �d The number of ji�es that this process has been scheduled in

kernel mode�

cutime �d The number of ji�es that this proces and its children have

been scheduled in user mode�

cstime �d The number of ji�es that this proces and its children have

been scheduled in kernel mode�

counter �d The current maximum size in ji�es of the process�s next

timeslice	 of what is currently left of its current timeslice	

if it is the currently running process�

priority �d The standard un�x nice value	 plus �fteen� The value is never

negative in the kernel�

timeout �u The time in ji�es of the process�s next timeout�

it real value �u

The time in ji�es before the interval timer mechanism causes

a SIGALRM to be sent to the process�

start time �d Time the process started in ji�es after system boot�

vsize �u Virtual memory size

rss �u Resident Set Size� number of pages the process has in real

��� �proc Directories and Files ��

memory	 minus
 for administrative purposes� This is just the

pages which count towards text	 data	 or stack space� This

does not include pages which have not been demandloaded

in	 or which are swapped out�

rlim �u Current limit on the size of the process	 �GB by default�

start code �u The address above which program text can run�

end code �u The address below which program text can run�

start stack �u

The address of the start of the stack�

kstk esp �u The current value of esp �
� bit stack pointer�	 as found in

the kernel stack page for the process�

kstk eip �u The current value of eip �
� bit instruction pointer�	 as found

in the kernel stack page for the process�

signal �d The bitmap of pending signals �usually ���

blocked �d The bitmap of blocked signals �usually �	 � for shells��

sigignore �d The bitmap of ignored signals�

sigcatch �d The bitmap of catched signals�

wchan �u This is the �channel� in which the process is waiting� This

is the address of a system call	 and can be looked up in a

namelist if you need a textual name�

statm This �le contains special status information that takes a bit longer to cook

than the information in stat	 and is needed rarely enough that it has been

relegated to a seperate �le� For each �eld in this �le	 the proc �lesystem has

to look at each of the �x
�� entries in the page directory	 and count what

they are doing� Here is a description of these �elds�

size �d The total number of pages that the process has mapped in the

virtual memory space	 whether they are in physical memory

or not�

resident �d The total number of pages that the process has in physical

�
� Structure of the �proc �lesystem ��

memory� This should equal the rss �eld from the stat �le	 but

is calculated rather than read from the process structure�

shared �d The total number of pages that the process has that are

shared with at least one other process�

trs �d Text Resident Size� the total number of text �code� pages

belonging to the process that are present in physical memory�

Does not include shared library pages�

lrs �d Library Resident Size� the total number of library pages used

by the process that are present in physical memory�

drs �d Data Resident Size� the total number of data pages belonging

to the process that are present in physical memory� Include

dirty library pages and stack�

dt �d The number of library pages which have been accessed �i�e�	

are dirty��

��� Structure of the �proc �lesystem

The proc �lesystem is rather interesting	 because none of the �les exist in any real directory

structure� Rather	 the proper vfs structures are �lled in with functions which do gigantic

case statements	 and in the case of reading a �le	 get a page	 �ll it in	 and put the result in

user memory space�

One of the most interesting parts of the proc �lesystem is the way that the individual

process directories are implemented� Essentially	 every process directory has the inode

number of its PID shifted left �� bits into a
� bit number greater than �x����ffff�

Within the process directories	 inode numbers are reused	 because the upper �� bits of the

inode number have been masked o� after choosing the right directory�

Another interesting feature is that unlike in a �real� �lesystem	 where there is one

file operations structure for the whole �lesystem	 as �le lookup is done	 di�erent

file operations structures are assigned to the f ops member of the �le structure passed

to those functions	 dynamically changing which functions will be called for directory lookup

and �le reading�

�Expand on this section later � right now it is mostly here to remind me to

�nish it� � � �

��� Programming the �proc �lesystem ��

��� Programming the �proc �lesystem

Note� the code fragments in this section won�t match the sources for your own kernel�

exactly	 as the �proc �lesystem has been expanded since this was originally written	 and is

being expanding still more� For instance	 the root dir structure has nearly doubled in size

from the one quoted here below�

Unlike in most �lesystems	 not all inode numbers in the proc �lesystem are unique�

Some �les are declared in structures like

static struct proc�dir�entry root�dir�� � �

� �����!� ��

� �����!!� ��

� ��#��loadavg� ��

� 	�%��uptime� ��

� ��#��meminfo� ��

� �����kmsg� ��

� %�#��version� ��

� #����self� � �� will change inode " ��

� $����net� �

��

and some �les are dynamically created as the �lesystem is read� All the process directories

�those with numerical names and self� essentially have inode numbers that are the pid

shifted left �� bits	 but the �les within those directories reuse low ����� or so� inode

numbers	 which are added at runtime to the pid of the process� This is done in inode�c by

careful reassignment of inode operation structures�

Most of the short readonly �les in the root directory and in each process subdirectory

one use a simpli�ed interface provided by the array inode operations structure	 within

array�c�

Other directories	 such as �proc�net�	 have their own inode numbers� For instance	 the

net directory itself has inode number �� The �les within that directory use inode numbers

from the range �������	 and those are uniquely identi�ed in inode�c and the �les given the

proper permissions when looked up and read�

Adding a �le is relatively simple	 and is left as an exersize for the reader� Adding a new

directory is a little bit harder� Assuming that it is not a dynamically allocated directory

like the process directories	 here are the steps��

�Unless you are making a subdirectory of the replicating� dynamically allocated process directory�

you would have to create a new �lesystem type� similar to the proc �lesystem in design� Subdirecto�

ries of the process directories are supported by the mechanism which dynamically creates the process

��� Programming the �proc �lesystem ��

�� Choose a unique range of inode numbers	 giving yourself a reasonable amount of

room for expansion� Then	 right before the line

if
�pid � �� not a process directory but in �proc� ��

add a section that looks like this�

if

ino �� ��$ ��
ino �� �%� � �� files withing �proc�net ��

inode��i�mode � S�IFREG � �����

inode��i�op � �proc�net�inode�operations�

return�

�

but modify it to to do what you want� For instance	 perhaps you have a range of

�������	 and some �les	 inodes ���	 ���	 and ���	 and some directories	 which are

inodes ��� and ���� You also have a �le that is readable only by root	 inode ����

Your example might look like this�

if

ino �� ��� ��
ino �� ��% � �� files withing �proc�foo ��

switch
ino �

case ����

case ����

inode��i�mode � S�IFDIR � �����

inode��i�op � �proc�foo�inode�operations�

break�

case ��%�

inode��i�mode � S�IFREG � �����

inode��i�op � �proc�foo�inode�operations�

break�

default�

inode��i�mode � S�IFREG � �����

inode��i�op � �proc�foo�inode�operations�

break�

�

return�

�

�� Find the de�nition of the �les� If your �les will go in a subdirectory of �proc	 for

instance	 you will look in root�c	 and �nd the following�

static struct proc�dir�entry root�dir�� � �

� �����!� ��

directories� I suggest going through this explanation of how to add a non�dynamically�allocated di�

rectory� understand it� and then read the code for the process subdirectories� if you wish to add

subdirectories to the process subdirectories�

��� Programming the �proc �lesystem ��

� �����!!� ��

� ��#��loadavg� ��

� 	�%��uptime� ��

� ��#��meminfo� ��

� �����kmsg� ��

� %�#��version� ��

� #����self� �� �� will change inode " ��

� $����net� �

��

You will then add a new �le to this structure	 like this	 using the next available inode

number�

�!!!�

� %�#��version� ��

� #����self� �� �� will change inode " ��

� $����net� ��

� &�	��foo� �

��

You will then have to provide for this new directory in inode�c	 so�

if
�pid � �� not a process directory but in �proc� ��

inode��i�mode � S�IFREG � �����

inode��i�op � �proc�array�inode�operations�

switch
ino

case ��

inode��i�op � �proc�kmsg�inode�operations�

break�

case $� �� for the net directory ��

inode��i�mode � S�IFDIR � �����

inode��i�op � �proc�net�inode�operations�

break�

default�

break�

return�

�

becomes

if
�pid � �� not a process directory but in �proc� ��

inode��i�mode � S�IFREG � �����

inode��i�op � �proc�array�inode�operations�

switch
ino

case ��

inode��i�op � �proc�kmsg�inode�operations�

��� Programming the �proc �lesystem ��

break�

case $� �� for the net directory ��

inode��i�mode � S�IFDIR � �����

inode��i�op � �proc�net�inode�operations�

break�

case &� �� for the foo directory ��

inode��i�mode � S�IFDIR � �����

inode��i�op � �proc�foo�inode�operations�

break�

default�

break�

return�

�

� You now have to provide for the contents of the �les within the foo directory�

Make a �le called proc�foo�c	 following the following model�� �The code in

proc lookupfoo�� and proc readfoo�� should be abstracted� as the function�

ality is used in more than one place��

��

� linux�fs�proc�foo!c

�

� Copyright
C �&&	 Linus Torvalds� Michael K! Johnson� and Your N! Here

�

� proc foo directory handling functions

�

� inode numbers ��� � ��% are reserved for this directory

�
�proc�foo� and its subdirectories

��

"include �asm�segment!h�

"include �linux�errno!h�

"include �linux�sched!h�

"include �linux�proc�fs!h�

"include �linux�stat!h�

static int proc�readfoo
struct inode �� struct file �� struct dirent �� int�

static int proc�lookupfoo
struct inode ��const char ��int�struct inode ���

static int proc�read
struct inode � inode� struct file � file�

char � buf� int count�

static struct file�operations proc�foo�operations � �

�This �le is availabe as �le proc�foo�c in the The Linux Kernel Hackers� Guide source mentioned

on the copyright page�

��� Programming the �proc �lesystem ��

NULL� �� lseek � default ��

proc�read� �� read ��

NULL� �� write � bad ��

proc�readfoo� �� readdir ��

NULL� �� select � default ��

NULL� �� ioctl � default ��

NULL� �� mmap ��

NULL� �� no special open code ��

NULL �� no special release code ��

��

��

� proc directories can do almost nothing!!

��

struct inode�operations proc�foo�inode�operations � �

�proc�foo�operations� �� default foo directory file�ops ��

NULL� �� create ��

proc�lookupfoo� �� lookup ��

NULL� �� link ��

NULL� �� unlink ��

NULL� �� symlink ��

NULL� �� mkdir ��

NULL� �� rmdir ��

NULL� �� mknod ��

NULL� �� rename ��

NULL� �� readlink ��

NULL� �� follow�link ��

NULL� �� bmap ��

NULL� �� truncate ��

NULL �� permission ��

��

static struct proc�dir�entry foo�dir�� � �

� �����!!� ��

� &����!� ��

� ����	��bar� ��

� �������suds� ��

� �������xyzzy� ��

� ��	�	��baz� ��

� �������dir�� ��

� �������dir�� ��

� ��%�$��rootfile� �

��

��� Programming the �proc �lesystem ��

"define NR�FOO�DIRENTRY

sizeof
foo�dir�
sizeof
foo�dir���

unsigned int get�bar
char � buffer�

unsigned int get�suds
char � buffer�

unsigned int get�xyzzy
char � buffer�

unsigned int get�baz
char � buffer�

unsigned int get�rootfile
char � buffer�

static int proc�read
struct inode � inode� struct file � file�

char � buf� int count

�

char � page�

int length�

int end�

unsigned int ino�

if
count � �

return �EINVAL�

page �
char � get�free�page
GFP�KERNEL�

if
�page

return �ENOMEM�

ino � inode��i�ino�

switch
ino �

case ����

length � get�bar
page�

break�

case ����

length � get�suds
page�

break�

case ����

length � get�xyzzy
page�

break�

case ��	�

length � get�baz
page�

break�

case ��%�

length � get�rootfile
page�

break�

default�

free�page

unsigned long page�

return �EBADF�

�

if
file��f�pos �� length �

��� Programming the �proc �lesystem ��

free�page

unsigned long page�

return ��

�

if
count � file��f�pos � length

count � length � file��f�pos�

end � count � file��f�pos�

memcpy�tofs
buf� page � file��f�pos� count�

free�page

unsigned long page�

file��f�pos � end�

return count�

�

static int proc�lookupfoo
struct inode � dir�const char � name� int len�

struct inode �� result

�

unsigned int pid� ino�

int i�

�result � NULL�

if
�dir

return �ENOENT�

if
�S�ISDIR
dir��i�mode �

iput
dir�

return �ENOENT�

�

ino � dir��i�ino�

i � NR�FOO�DIRENTRY�

while
i�� � � �� �proc�match
len�name�foo�dir�i

�� nothing ���

if
i � � �

iput
dir�

return �ENOENT�

�

if
�
�result � iget
dir��i�sb�ino �

iput
dir�

return �ENOENT�

�

iput
dir�

return ��

�

static int proc�readfoo
struct inode � inode� struct file � filp�

struct dirent � dirent� int count

��� Programming the �proc �lesystem �

�

struct proc�dir�entry � de�

unsigned int pid� ino�

int i�j�

if
�inode �� �S�ISDIR
inode��i�mode

return �EBADF�

ino � inode��i�ino�

if

unsigned filp��f�pos � NR�FOO�DIRENTRY �

de � foo�dir � filp��f�pos�

filp��f�pos���

i � de��namelen�

ino � de��low�ino�

put�fs�long
ino� �dirent��d�ino�

put�fs�word
i��dirent��d�reclen�

put�fs�byte
��i�dirent��d�name�

j � i�

while
i��

put�fs�byte
de��name�i�� i�dirent��d�name�

return j�

�

return ��

�

unsigned int get�foo
char � buffer

�

�� code to find everything goes here ��

return sprintf
buffer� �format string�� variables�

�

unsigned int get�suds
char � buffer

�

�� code to find everything goes here ��

return sprintf
buffer� �format string�� variables�

�

unsigned int get�xyzzy
char � buffer

��� Programming the �proc �lesystem ��

�

�� code to find everything goes here ��

return sprintf
buffer� �format string�� variables�

�

unsigned int get�baz
char � buffer

�

�� code to find everything goes here ��

return sprintf
buffer� �format string�� variables�

�

unsigned int get�rootfile
char � buffer

�

�� code to find everything goes here ��

return sprintf
buffer� �format string�� variables�

�

�� Filling in the directories dir� and dir� is left as an excersize� In most cases	 such

directories will not be needed� However	 if they are	 the steps presented here may be

applied recursively to add �les to a directory at another level� Notice that I saved

a range of ������� for �proc�foo� and all its subdirectories	 so there are plenty of

unused inode numbers in that range for your �les in dir� and dir�� I suggest reserving

a range for each directory	 in case you need to expand� Also	 I suggest keeping all the

extra data and functions in foo�c	 rather than making yet another �le	 unless the �les

in the dir� and dir� directories are signi�cantly di�erent in concept than foo�

�� Make the appropriate changes to fs�proc�Make�le� This is also left as an excersize

for the reader�

�Please note� I have made changes similar to these �I wrote the �proc�net�

support�� However� this has been written from memory� and may be uninten�

tionally incomplete� If you notice any inadequacies� please explain them to me

in as complete detail as possible� My email address is johnsonm�sunsite�unc�edu�

Chapter �

The Linux scheduler

�This is still pretty weak� but I think that I have removed most or all of the in�

accuracies that were in previous versions� Jim Wisner appears to have dropped

from the face of the net� so I have not been able to get his help at making this

chapter more meaningful� If anyone has a copy of the paper he wrote on the

scheduler� please get in touch with me� as he promised me a copy� and I�d at

least like to see what he had to say about the scheduler��

�I�m not going to spend any further time on this until the new scheduler is

added to Linux� The current one doesn�t handle lots of tasks at once very well�

and some day a new one will be put in��

The scheduler is a function	 schedule��	 which is called at various times to determine

whether or not to switch tasks	 and if so	 which task to switch to� The scheduler works in

concert with the function do timer��	 which is called ��� times per second �on Linux�x���	

on each system timer interrupt	 and with the system call handler part ret from sys call��

which is called on the return from system calls�

When

a system call completes	 or when a �slow� interrupt completes	 ret from sys call�� is

called� It does a bit of work	 but all we care about are two lines�

cmpl (���need�resched

jne reschedule

These lines check the need resched �ag	 and if it is set	 schedule�� is called	 choosing a

new process	 and then after schedule�� has chosen the new process	 a little more magic in

ret from sys call�� restores the environment for the chosen process �which may well be	

and usually is	 the process which is already running�	 and returns to user space� Returning

��

���� The code ��

to user space causes the new process which has been selected to run to be returned to�

In sched init�� in kernel�sched�c	 request irq�� is used to get the timer interrupt�

request irq�� sets up housekeeping before and after interrupts are serviced	 as seen in

asm�irq�h�� However	 interrupts that are serviced often and that must be serviced quickly	

such as serial interrupts	 do not call ret from sys call�� when done and do as little as

possible	 to keep the overhead down� In particular	 they only save the registers that C

would clobber	 and assume that if the handler is going to use any others	 the handler will

deal with that� These �fast� interrupt handlers must be installed with the irqaction��

function described in section ����

The Linux scheduler is signi�cantly di�erent from the schedulers in other unices	 espe

cially in its treatment of �nice level� priorities� Instead of scheduling processes with higher

priority �rst	 Linux does roundrobin scheduling	 but lets higher priority processes run both

sooner and longer� The standard un�x scheduler instead uses queues of processes� Most

implementations use two priority queues� a standard queue and a �real time� queue� Essen

tially	 all processes on the �real time� queue get executed before processes on the standard

queue	 if they are not blocked	 and within each queue	 higher nicelevel processes run before

lower ones� The Linux scheduler gives much better interactive performance at the expense

of some �throughput��

��� The code

Here is a copy of the relevant code from �usr�src�linux�kernel�sched�c	 annotated and

abridged�

void schedule
void

�

int i�next�c�

struct task�struct �� p�

�� check alarm� wake up any interruptible tasks that have got a signal ��

need�resched � ��

for
p � �LAST�TASK � p � �FIRST�TASK � ��p �

The process table is an array of pointers to struct task struct structures� See

�usr�include�linux�sched�h for the de�nition of this structure�

if
��p ��

�p��state �� TASK�INTERRUPTIBLE

continue�

���� The code ��

if

�p��timeout ��
�p��timeout � jiffies �

If a process has a timeout and has reached it	 then jiffies �the number of ���th�s of a

second since system start� will have passed timeout� timeout was originally set as jiffies

desired timeout�

�p��timeout � ��

�p��state � TASK�RUNNING�

� else if

�p��signal �
�p��blocked

If the process has been sent a signal	 and is no longer blocked	 then let the process be

allowed to run again	 when its turn comes�

�p��state � TASK�RUNNING�

�

At this point	 all runnable processes have been �agged as runnable	 and we are ready to

choose one to run	 by running through the process table� What we are looking for is the

process with the largest counter� The counter for each runnable process is incremented

each time the scheduler is called by an amount that is weighted by the priority	 which is

the kernel version of the �nice� value� �It di�ers in that the priority is never negative��

�� this is the scheduler proper� ��

while
� �

c � ���

next � ��

i � NR�TASKS�

p � �task�NR�TASKS��

while
��i �

if
����p

If there is no process in this slot then don�t bother� � �

continue�

if

�p��state �� TASK�RUNNING ��
�p��counter � c

c �
�p��counter� next � i�

If the counter is higher than any previous counter	 then make the process the next process	

unless	 of course	 an even higher one is encountered later in the loop�

���� The code ��

�

if
c

break�

for
p � �LAST�TASK � p � �FIRST�TASK � ��p

if
�p

�p��counter �

�p��counter �� � �

�p��priority�

Here is where the counter is set� It is �rst divided by �	 and then the priority is added� Note

that this happens only if no process has been found to switch to	 because of the break�

line�

�

sti
�

switch�to
next�

�

sti�� enables interrupts again	 and switch to�� �de�ned in linux�sched�h� sets things up

so that when we return to ret to sys call��	 we will return from ret to sys call�� into

the new process�

I have truncated do timer�� extremely	 only showing the pieces that relate speci�cally

to schedule��� For information on the rest	 see the appropriate section� For instance	 for

commentary on the itimer mechanism see the section on itimers� �I suppose I need to

write that section now� � �I will need to put a reference here to that section�� I

have speci�cally left out all the accounting stu�	 all the timer stu�	 and the �oppy timer�

static void do�timer
struct pt�regs � regs

�

unsigned long mask�

struct timer�struct �tp � timer�table���

struct task�struct �� task�p�

jiffies���

Here is where jiffies is incremented� This is allimportant to the rest of the kernel	

because all time calculations �except for timed delay loops� are based on this variable�

if
current �� task��� ��
��current��counter��� �

current��counter���

need�resched � ��

���� The code ��

�

�

Don�t let task � run if anything else can run	 because task � doesn�t do anything� If task

� is running	 the machine is idle	 but don�t let it be idle if anything else is happening	 so

run schedudule as soon as possible� Set the need resched �ag if necessary so that schedule

gets called again as soon as possible�

Chapter �

How System Calls Work

�This needs to be a little re�worked and expanded upon� but I am waiting to

see if the iBCS stu� makes any impact on it as I write other stu���

This section covers �rst the mechanisms provided by the
�� for handling system calls	

and then shows how Linux uses those mechanisms� This is not a reference to the individual

system calls� There are very many of them	 new ones are added occasionally	 and they are

documented in man pages that should be on your Linux system�

�Ideally� this chapter should be part of another section� I think� Maybe�

however� it should just be expanded� I think it belongs somewhere near the

chapter on how to write a device driver� because it explains how to write a

system call��

��� What Does the ��
 Provide�

The
�� recognizes two event classes� exceptions and interrupts� Both cause a forced context

switch to new a procedure or task� Interrupts can occur at unexpected times during the

execution of a program and are used to respond to signals from hardware� Exceptions are

caused by the execution of instructions�

Two sources of interrupts are recognized by the
��� Maskable interrupts and Nonmask

able interrupts� Two sources of exceptions are recognized by the
��� Processor detected

exceptions and programmed exceptions�

Each interrupt or exception has a number	 which is referred to by the
�� literature as the

vector� The NMI interrupt and the processor detected exceptions have been assigned vectors

in the range � through
�	 inclusive� The vectors for maskable interrupts are determined

��

	��� What Does the ��� Provide� ��

by the hardware� External interrupt controllers put the vector on the bus during the

interruptacknowledge cycle� Any vector in the range
� through ���	 inclusive	 can be

used for maskable interrupts or programmed exceptions� See �gure ��� for a listing of all

the possible interrupts and exceptions� �Check all this out to make sure that it is

right��

� divide error

� debug exception

� NMI interrupt

 Breakpoint

� INTOdetected Over�ow

� BOUND range exceeded

� Invalid opcode

� coprocessor not available

� double fault

� coprocessor segment overrun

�� invalid task state segment

�� segment not present

�� stack fault

�
 general protection

�� page fault

�� reserved

�� coprocessor error

���
� reserved

����� maskable interrupts

Figure ���� Interrupt and Exception Assignments

HIGHEST Faults except debug faults

Trap instructions INTO	 INT n	 INT

Debug traps for this instruction

Debug traps for next instruction

NMI interrupt

LOWEST INTR interrupt

Figure ���� Priority of simultaneous interrupts and exceptions

	�
� How Linux Uses Interrupts and Exceptions ��

��� How Linux Uses Interrupts and Exceptions

Under Linux the execution of a system call is invoked by a maskable interrupt or exception

class transfer	 caused by the instruction int �x��� We use vector �x�� to transfer control

to the kernel� This interrupt vector is initialized during system startup	 along with other

important vectors like the system clock vector�

As of version ������ of Linux	 there are ��� system calls� Documentation for these can

be found in the man ��� pages� When a user invokes a system call	 execution �ow is as

follows�

� Each call is vectored through a stub in libc� Each call within the libc library is

generally a syscallX�� macro	 where X is the number of parameters used by the

actual routine� Some system calls are more complex then others because of variable

length argument lists	 but even these complex system calls must use the same entry

point� they just have more parameter setup overhead� Examples of a complex system

call include open�� and ioctl���

� Each syscall macro expands to an assembly routine which sets up the calling stack

frame and calls system call�� through an interrupt	 via the instruction int $�x��

For example	 the setuid system call is coded as

syscall�
int�setuid�uid t�uid�

Which will expand to�

�setuid�

subl (���exp

pushl �ebx

movzwl ��
�esp��eax

movl �eax��
�esp

movl (�	��eax

movl �
�esp��ebx

int (�x$�

movl �eax��edx

testl �edx��edx

jge L�

negl �edx

movl �edx��errno

movl (����eax

popl �ebx

addl (���esp

ret

	��� How Linux Initializes the system call vectors �

L��

movl �edx��eax

popl �ebx

addl (���esp

ret

The macro de�nition for the syscallX�� macros can be found

in �usr�include�linux�unistd�h	 and the userspace system call library code can be

found in �usr�src�libc�syscall�

� At this point no system code for the call has been executed� Not until the int %�x��

is executed does the call transfer to the kernel entry point system call��� This

entry point is the same for all system calls� It is responsible for saving all registers	

checking to make sure a valid system call was invoked and then ultimately transfering

control to the actual system call code via the o�sets in the sys call table� It

is also responsible for calling ret from sys call�� when the system call has been

completed	 but before returning to user space�

Actual code for system call entry point can be

found in �usr�src�linux�kernel�sys call�S Actual code for many of the system calls

can be found in �usr�src�linux�kernel�sys�c	 and the rest are found elsewhere� find

is your friend�

� After the system call has executed	 ret from sys call�� is called� It checks to see

if the scheduler should be run	 and if so	 calls it�

� Upon return from the system call	 the syscallX�� macro code checks for a negative

return value	 and if there is one	 puts a positive copy of the return value in the global

variable errno	 so that it can be accessed by code like perror���

��� How Linux Initializes the system call vectors

The startup ���� code found in �usr�src�linux�boot�head�S starts everything o� by calling

setup idt��� This routine sets up an IDT �Interrupt Descriptor Table� with ��� entries�

No interrupt entry points are actually loaded by this routine	 as that is done only after

paging has been enabled and the kernel has been moved to �xC�������� An IDT has ���

entries	 each � bytes long	 for a total of ���� bytes�

When start kernel�� �found in �usr�src�linux�init�main�c� is called it invokes

trap init�� �found in �usr�src�linux�kernel�traps�c�� trap init�� sets up the IDT via

the macro set trap gate�� �found in �usr�include�asm�system�h�� trap init�� initializes

the interrupt descriptor table as shown in �gure ��
�

	�	� How to Add Your Own System Calls ��

� divide error

� debug

� nmi

 int

� over�ow

� bounds

� invalid op

� device not available

� double fault

� coprocessor segment overrun

�� invalid TSS

�� segment not present

�� stack segment

�
 general protection

�� page fault

�� reserved

�� coprocessor error

�� alignment check

����� reserved

Figure ��
� Initialization of interrupts

At this point the interrupt vector for the system calls is not set up� It is initialized by

sched init�� �found in �usr�src�linux�kernel�sched�c�� A call to set system gate ��x���

�system call� sets interrupt �x�� to be a vector to the system call�� entry point�

��� How to Add Your Own System Calls

�� Create a directory under the �usr�src�linux� directory to hold your code�

�� Put any include �les in �usr�include�sys� and �usr�include�linux��

� Add the relocatable module produced by the link of your new kernel code to the

ARCHIVES and the subdirectory to the SUBDIRS lines of the top level Make�le� See

fs�Make�le	 target fs�o for an example�

�� Add a 	define NR xx to unistd�h to assign a call number for your system call	 where

xx	 the index	 is something descriptive relating to your system call� It will be used to

set up the vector through sys call table to invoke you code�

	�	� How to Add Your Own System Calls ��

�� Add an entry point for your system call to the sys call table in sys�h� It should

match the index �xx� that you assigned in the previous step� The NR syscalls variable

will be recalculated automatically�

�� Modify any kernel code in kernel�fs�mm�	 etc� to take into account the environment

needed to support your new code�

�� Run make from the top level to produce the new kernel incorporating your new code�

At this point	 you will have to either add a syscall to your libraries	 or use the proper

syscalln�� macro in your user program for your programs to access the new system call�

The ��	DX Microprocessor Programmer�s Reference Manual is a helpful reference	 as is

James Turley�s Advanced �
��	 Programming Techniques� See the Annotated bibliography

in Appendix A�

Chapter �

Linux Memory Management

�This chapter needs to be made much friendlier� I�d hate to remove detail� but

it needs to be less daunting� Many have told me that this is a daunting chapter�

and it need not be� I�ll re�work it later� In the meantime� please bear with me��

	�� Overview

The Linux memory manager implements demand paging with a copyonwrite strategy

relying on the
���s paging support� A process acquires its page tables from its parent

�during a fork��� with the entries marked as readonly or swapped� Then	 if the process

tries to write to that memory space	 and the page is a copyonwrite page	 it is copied	 and

the page is marked readwrite� An exec�� results in the reading in of a page or so from the

executable� The process then faults in any other pages it needs�

Each process has a page directory which means it can access � KB of page tables pointing

to � MB of � KB pages which is � GB of memory� A process� page directory is initialized

during a fork by copy page tables��� The idle process has its page directory initialized

during the initialization sequence�

Each user process has a local descriptor table that contains a code segment and data

stack segment� These user segments extend from � to
 GB ��xc��������� In user space

linear addresses� and logical addresses� are identical�

�In the ����� linear address run from GB to �GB� A linear address points to a particular

memory location within this space� A linear address is not a physical address � it is a virtual

address�
�A logical address consists of a selector and an o�set� The selector points to a segment and the

o�set tells how far into that segment the address is located�

��

���� Overview ��

The kernel code and data segments are priveleged segments de�ned in the global descrip

tor table and extend from
 GB to � GB� The swapper page directory �swapper page dir

is set up so that logical addresses and physical addresses are identical in kernel space�

The space above
 GB appears in a process� page directory as pointers to kernel page

tables� This space is invisible to the process in user mode but the mapping becomes relevant

when privileged mode is entered	 for example	 to handle a system call�

Supervisor mode is entered within the context of the current process so address trans

lation occurs with respect to the process� page directory but using kernel segments� This is

identically the mapping produced by using the swapper pg dir and kernel segments as both

page directories use the same page tables in this space� Only task�� �the idle task� �This

should be documented earlier in this guide� � � �� uses the swapper pg dir directly�

� The user process� segment base � �x��	 page dir private to the process�

� user process makes a system call� segment base��xc������� page dir � same user

page dir�

� swapper pg dir contains a mapping for all physical pages from �xc������� to

�xc������� end mem	 so the �rst ��� entries in swapper pg dir are ��s	 and then

there are � or more that point to kernel page tables�

� The user page directories have the same entries as tt swapper pg dir above ���� The

�rst ��� entries map the user space�

The upshot is that whenever the linear address is above �xc������� everything uses the

same kernel page tables�

The user stack sits at the top of the user data segment and grows down� The kernel

stack is not a pretty data structure or segment that I can point to with a �yon lies the kernel

stack�� A kernel stack frame �a page� is associated with each newly created process and

is used whenever the kernel operates within the context of that process� Bad things would

happen if the kernel stack were to grow below its current stack frame� �Where is the

kernel stack put� I know that there is one for every process� but where is it

stored when it�s not being used��

User pages can be stolen or swapped� A user page is one that is mapped below
 GB in

a user page table� This region does not contain page directories or page tables� Only dirty

pages are swapped�

�Sometimes called the swapper task� even though it has nothing to do with swapping in the Linux

implementation� for historical reasons

��
� Physical memory ��

Minor alterations are needed in some places �tests for process memory limits comes to

mind� to provide support for programmer de�ned segments�

	�� Physical memory

Here is a map of physical memory before any user processes are executed� The column on

the left gives the starting address of the item	 numbers in italics are approximate� The

column in the middle names the item�s�� The column on the far right gives the relevant

routine or variable name or explains the entry�

x��

 FREE memory end or high memory

mem map mem init��

inode table inode init��

device data device init��y

�x������ more pg tables paging init��

�x�A���� RESERVED

x
	

 FREE

low memory start

�x������ kernel code data

floppy track buffer

bad pg table

bad page

used by page fault handlers to kill pro

cesses gracefully when out of memory�

�x������ pg� the �rst kernel page table�

�x������ swapper pg dir the kernel page directory�

�x������ null page

ydeviceinits that acquire memory are�main�c�� profil buffer	 con init	 psaux init	

rd init	 scsi dev init� Note that all memory not marked as FREE is RESERVED

�mem init�� RESERVED pages belong to the kernel and are never freed or swapped�

���� A user process� view of memory ��

	�� A user process� view of memory

�xc������� The invisible kernel reserved

initial stack

room for stack growth � pages

�x�������� shared libraries

brk unused

malloc memory

end data uninitialized data

end code initialized data

�x�������� text

Both the code segment and data segment extend all the way from �x�� to
 GB� Cur

rently the page fault handler do wp page checks to ensure that a process does not write to

its code space� However	 by catching the SEGV signal	 it is possible to write to code space	

causing a copyonwrite to occur� The handler do no page ensures that any new pages the

process acquires belong to either the executable	 a shared library	 the stack	 or lie within

the brk value�

A user process can reset its brk value by calling sbrk��� This is what malloc�� does

when it needs to� The text and data portions are allocated on separate pages unless one

chooses the �N compiler option� Shared library load addresses are currently taken from the

shared image itself� The address is between ��� GB and
 GB	 except in special cases�

User process Memory Allocation

swappable shareable

a few code pages Y Y

a few data pages Y N�

stack Y N

pg dir N N

code�data page table N N

stack page table N N

task struct N N

kernel stack frame N N

shlib page table N N

a few shlib pages Y Y�

�What do the question marks mean� Do they mean that they might go

either way� or that you are not sure�� The stack	 shlibs and data are too far removed

from each other to be spanned by one page table� All kernel page tables are shared by all

processes so they are not in the list� Only dirty pages are swapped� Clean pages are stolen

��	� Memory Management data in the process table ���

so the process can read them back in from the executable if it likes� Mostly only clean pages

are shared� A dirty page ends up shared across a fork until the parent or child chooses to

write to it again�

	�� Memory Management data in the process table

Here is a summary of some of the data kept in the process table which is used for memory

managment� �These should be much better documented� We need more details��

� Process memory limits� ulong start code� end code� end data� brk�

start stack�

� Page fault counting� ulong min flt� maj flt� cmin flt� cmaj flt

� Local descriptor table� struct desc struct ldt��� is the local descriptor table for

task�

� rss� number of resident pages�

� swappable� if �	 then process�s pages will not be swapped�

� kernel stack page� pointer to page allocated in fork�

� saved kernel stack� V�� mode stu��

� struct tss

� Stack segments

esp� kernel stack pointer �kernel stack page�

ss� kernel stack segment ��x���

esp� � ss� � esp� � ss� � �

unused privelege levels�

� Segment selectors� ds � es � fs � gs � ss � �x��	 cs � �x�f

All point to segments in the current ldt��

� cr�� points to the page directory for this process�

� ldt� LDT�n� selector for current task�s LDT�

���� Memory initialization ���

	�	 Memory initialization

In start kernel�� �main�c� there are
 variables related to memory initialization�

memory start starts out at � MB� Updated by device initialization�

memory end end of physical memory� � MB	 �� MB	 or whatever�

low memory start end of the kernel code and data that is loaded initially�

Each device init typically takes memory start and returns an updated value if it allocates

space at memory start �by simply grabbing it�� paging init�� initializes the page tables

in the swapper pg dir �starting at �xc�������� to cover all of the physical memory from

memory start to memory end� Actually the �rst � MB is done in startup �� �head�S��

memory start is incremented if any new page tables are added� The �rst page is zeroed

to trap null pointer references in the kernel�

In sched init�� the ldt and tss descriptors for task�� are set in the GDT	 and

loaded into the TR and LDTR �the only time it�s done explicitly�� A trap gate ��x��� is

set up for system call��� The nested task �ag is turned o� in preparation for entering

user mode� The timer is turned on� The task struct for task�� appears in its entirety

in
linux�sched�h��

mem map is then constructed by mem init�� to re�ect the current usage of physical pages�

This is the state re�ected in the physical memory map of the previous section�

Then Linux moves into user mode with an iret after pushing the current ss	 esp	 etc�

Of course the user segments for task�� are mapped right over the kernel segments so

execution continues exactly where it left o��

task���

� pg dir � swapper pg dir which means the the only addresses mapped are in the

range
 GB to
 GB high memory�

� LDT�� � user code	 base��xc�������	 size � ���K

� LDT�� � user data	 base��xc�������	 size � ���K

The �rst exec�� sets the LDT entries for task�� to the user values of base � �x�	

limit � TASK SIZE � �xc�������� Thereafter	 no process sees the kernel segments while

in user mode�

����� Processes and the Memory Manager

Memoryrelated work done by fork���

���� Memory initialization ���

� Memory allocation

� � page for the task struct�

� � page for the kernel stack�

� � for the pg dir and some for pg tables �copy page tables�

� Other changes

� ss� set to kernel stack segment ��x��� to be sure�

� esp� set to top of the newly allocated kernel stack page

� cr� set by copy page tables�� to point to newly allocated page directory�

� ldt � LDT�task nr� creates new ldt descriptor�

� descriptors set in gdt for new tss and ldt��

� The remaining registers are inherited from parent�

The processes end up sharing their code and data segments �although they have separate

local desctriptor tables	 the entries point to the same segments�� The stack and data pages

will be copied when the parent or child writes to them �copyonwrite��

Memoryrelated work done by exec���

� memory allocation

� � page for exec header entire �le for omagic

� � page or more for stack �MAX ARG PAGES�

� clear page tables�� used to remove old pages�

� change ldt�� sets the descriptors in the new LDT�

� ldt�� � code base��x��	 limit�TASK SIZE

� ldt�� � data base��x��	 limit�TASK SIZE

These segments are DPL�
	 P��	 S��	 G��� type�a �code� or � �data�

� Up to MAX ARG PAGES dirty pages of argv and envp are allocated and stashed at the

top of the data segment for the newly created user stack�

� Set the instruction pointer of the caller eip � ex�a entry

� Set the stack pointer of the caller to the stack just created �esp � stack pointer� These

will be popped o� the stack when the caller resumes�

���� Acquiring and Freeing Memory� Paging Policy ��

� update memory limits

end code � ex�a text

end data � end code # ex�a data

brk � end data # ex�a bss

Interrupts and traps are handled within the context of the current task� In particular	

the page directory of the current process is used in address translation� The segments	

however	 are kernel segments so that all linear addresses point into kernel memory� For

example	 assume a user process invokes a system call and the kernel wants to access a

variable at address �x��� The linear address is �xc������� �using kernel segments� and the

physical address is �x��� The later is because the process� page directory maps this range

exactly as page pg dir�

The kernel space ��xc������� high memory� is mapped by the kernel page tables

which are themselves part of the RESERVED memory� They are therefore shared by all

processes� During a fork copy page tables�� treats RESERVED page tables di�erently�

It sets pointers in the process page directories to point to kernel page tables and does not

actually allocate new page tables as it does normally� As an example the kernel stack page

�which sits somewhere in the kernel space� does not need an associated page table allocated

in the process� pg dir to map it�

The interrupt instruction sets the stack pointer and stack segment from the privilege �

values saved in the tss of the current task� Note that the kernel stack is a really fragmented

object � it�s not a single object	 but rather a bunch of stack frames each allocated when a

process is created	 and released when it exits� The kernel stack should never grow so rapidly

within a process context that it extends below the current frame�

	�
 Acquiring and Freeing Memory� Paging Policy

When any kernel routine wants memory it ends up calling get free page��� This is at a

lower level than kmalloc�� �in fact kmalloc�� uses get free page�� when it needs more

memory��

get free page�� takes one parameter	 a priority� Possible values are GFP BUFFER	

GFP KERNEL	 and GFP ATOMIC� It takes a page o� of the free page list	 updates mem map	

zeroes the page and returns the physical address of the page �note that kmalloc�� returns

a physical address� The logic of the mm depends on the identity map between logical and

physical addresses��

That itself is simple enough� The problem	 of course	 is that the free page list may

be empty� If you did not request an atomic operation	 at this stage	 you enter into the realm

���� Acquiring and Freeing Memory� Paging Policy ���

of page stealing which we�ll go into in a moment� As a last resort �and for atomic requests�

a page is torn o� from the secondary page list �as you may have guessed	 when pages

are freed	 the secondary page list gets �lled up �rst��

The actual manipulation of the page lists and mem map occurs in this mysterious macro

called REMOVE FROM MEM QUEUE�� which you probably never want to look into� Su�ce it to

say that interrupts are disabled� �I think that this should be explained here� It is

not that hard� � � �

Now back to the page stealing bit� get free page�� calls try to free page�� which

repeatedly calls shrink buffers�� and swap out�� in that order until it is successful in

freeing a page� The priority is increased on each successive iteration so that these two

routines run through their page stealing loops more often�

Here�s one run through swap out���

� Run through the process table and get a swappable task say Q�

� Find a user page table �not RESERVED� in Q�s space�

� For each page in the table try to swap out� page ��

� Quit when a page is freed�

Note that swap out�� �called by try to free page��� maintains static variables so it may

resume the search where it left o� on the previous call�

try to swap out�� scans the page tables of all user processes and enforces the stealing

policy�

�� Do not �ddle with RESERVED pages�

�� Age the page if it is marked accessed �� bit��

� Don�t tamper with recently acquired pages �last free pages���

�� Leave dirty pages with map counts � � alone�

�� Decrement the map count of clean pages�

�� Free clean pages if they are unmapped�

�� Swap dirty pages with a map count of ��

��� The page fault handlers ���

Of these actions	 � and � will stop the process as they result in the actual freeing of a

physical page� Action � results in one of the processes losing an unshared clean page that

was not accessed recently �decrement Q��rss� which is not all that bad	 but the cumulative

e�ects of a few iterations can slow down a process considerably� At present	 there are �

iterations	 so a page shared by � processes can get stolen if it is clean�

Page table entries are updated and the TLB invalidated� �Wonder about the lat�

ter� It seems unnecessary since accessed pages aren�t o�ed and there is a walk

through many page tables between iterations � � �may be in case an interrupt

came along and wanted the most recently axed page��

The actual work of freeing the page is done by free page��	 the complement of

get free page��� It ignores RESERVED pages	 updates mem map	 then frees the page and

updates the page lists if it is unmapped� For swapping �in � above�	 write swap page��

gets called and does nothing remarkable from the memory management perspective�

The details of shrink buffers�� would take us too far a�eld� Essentially it looks for

free bu�ers	 then writes out dirty bu�ers	 then goes at busy bu�ers and calls free page��

when its able to free all the bu�ers on a page�

Note that page directories and page tables along with RESERVED pages do not get

swapped	 stolen or aged� They are mapped in the process page directory through reserved

page tables� They are freed only on exit from the process�

	�� The page fault handlers

When a process is created via fork	 it starts out with a page directory and a page or so of

the executable� So the page fault handler is the source of most of a processes� memory�

The page fault handler do page fault�� retrieves the faulting address from the register

cr�� The error code �retrieved in sys call�S� di�erentiates user�supervisor access and the

reason for the fault � write protection or a missing page� The former is handled by

do wp page�� and the latter by do no page���

If the faulting address is greater than TASK SIZE the process receives a SIGKILL�

�Why this check� This can only happen in kernel mode because of segment

level protection��

These routines have some subtleties as they can get called from an interrupt� You can�t

assume that it is the �current� task that is executing�

do no page�� handles three possible situations�

�� The page is swapped�

���� Paging ���

�� The page belongs to the executable or a shared library�

� The page is missing � a data page that has not been allocated�

In all cases get empty pgtable�� is called �rst to ensure the existence of a page table

that covers the faulting address� In case
 get empty page�� is called to provide a page at

the required address and in case of the swapped page	 swap in�� is called�

In case �	 the handler calls share page�� to see if the page is shareable with some other

process� If that fails it reads in the page from the executable or library �It repeats the call

to share page�� in case another process did the same meanwhile�� Any portion of the page

beyond the brk value is zeroed�

A page read in from the disk is counted as a major fault �maj flt�� This happens with

a swap in�� or when it is read from the executable or a library� Other cases are deemed

minor faults �min flt��

When a shareable page is found	 it is writeprotected� A process that writes to a shared

page will then have to go through do wp page�� which does the copyonwrite�

do wp page�� does the following�

� send SIGSEGV if any user process is writing to current code space�

� If the old page is not shared then just unprotect it�

Else get free page�� and copy page��� The page acquires the dirty �ag from the

old page� Decrement the map count of the old page�

	�� Paging

Paging is swapping on a page basis rather than by entire processes� We will use swapping

here to refer to paging	 since Linux only pages	 and does not swap	 and people are more used

to the word �swap� than �page�� Kernel pages are never swapped� Clean pages are also

not written to swap� They are freed and reloaded when required� The swapper maintains

a single bit of aging info in the PAGE ACCESSED bit of the page table entries� �What are

the maintainance details� How is it used��

Linux supports multiple swap �les or devices which may be turned on or o� by the

swapon and swapo� system calls� Each swap�le or device is described by a struct

swap info struct �swap�c��

static struct swap�info�struct �

���� Paging ���

unsigned long flags�

struct inode � swap�file�

unsigned int swap�device�

unsigned char � swap�map�

char � swap�lockmap�

int lowest�bit�

int highest�bit�

� swap�info�MAX�SWAPFILES��

The �ags �eld �SWP USED or SWP WRITEOK� is used to control access to the swap �les�

When SWP WRITEOK is o� space will not be allocated in that �le� This is used by swapo�

when it tries to unuse a �le� When swapon adds a new swap �le it sets SWP USED� A

static variable nr swapfiles stores the number of currently active swap �les� The �elds

lowest bit and highest bit bound the free region in the swap �le and are used to speed

up the search for free swap space�

The user program mkswap initializes a swap device or �le� The �rst page contains a

signature ��SWAP�SPACE�� in the last �� bytes	 and holds a bitmap� Initially ��s in the bitmap

signal bad pages� A ��� in the bitmap means the corresponding page is free� This page is

never allocated so the initialization needs to be done just once�

The syscall swapon�� is called by the user program swapon typically from �etc�rc� A

couple of pages of memory are allocated for swap map and swap lockmap�

swap map holds a byte for each page in the swap�le� It is initialized from the bitmap to

contain a � for available pages and ��� for unusable pages� It is used to maintain a count of

swap requests on each page in the swap �le� swap lockmap holds a bit for each page that

is used to ensure mutual exclusion when reading or writing swap �les�

When a page of memory is to be swapped out an index to the swap location is obtained

by a call to get swap page��� This index is then stored in bits ��
� of the page table entry

so the swapped page may be located by the page fault handler	 do no page�� when needed�

The upper � bits of the index give the swap�le �or device� and the lower �� bits give

the page number on that device� That makes as many as ��� swap�les	 each with room

for about �� GB	 but the space overhead due to the swap map would be large� Instead the

swap�le size is limited to �� MB	 because the swap map then takes � page�

The function swap duplicate�� is used by copy page tables�� to let a child process

inherit swapped pages during a fork� It just increments the count maintained in swap map

for that page� Each process will swap in a separate copy of the page when it accesses it�

swap free�� decrements the count maintained in swap map� When the count drops to

� the page can be reallocated by get swap page��� It is called each time a swapped page is

���� ����� Memory Mangament ���

read into memory �swap in��� or when a page is to be discarded �free one table��	 etc���

	� ����
 Memory Mangament

A logical address speci�ed in an instruction is �rst translated to a linear address by the

segmenting hardware� This linear address is then translated to a physical address by the

paging unit�

����� Paging on the �	

There are two levels of indirection in address translation by the paging unit� A page

directory contains pointers to ���� page tables� Each page table contains pointers to

���� pages� The register CR
 contains the physical base address of the page directory and

is stored as part of the TSS in the task struct and is therefore loaded on each task switch�

A
�bit Linear address is divided as follows�

� �� �� �� �� �

DIR TABLE OFFSET

Physical address is then computed �in hardware� as�

CR
 DIR points to the table base�

table base TABLE points to the page base�

physical address � page base OFFSET

Page directories �page tables� are page aligned so the lower �� bits are used to store

useful information about the page table �page� pointed to by the entry�

Format for Page directory and Page table entries�

� �� �� � � � � � �
 � � �

ADDRESS OS � � D A � � U�S R�W P

D � means page is dirty �unde�ned for page directory entry��

R�W � means readonly for user�

U�S � means user page�

P � means page is present in memory�

A � means page has been accessed �set to � by aging��

OS bits can be used for LRU etc	 and are de�ned by the OS�
The corresponding de�nitions for Linux are in
linux�mm�h��

When a page is swapped	 bits ��
� of the page table entry are used to mark where a

page is stored in swap �bit � must be ���

���� ����� Memory Mangament ���

Paging is enabled by setting the highest bit in CR�� �in head�S�� At each stage of

the address translation access permissions are veri�ed and pages not present in memory

and protection violations result in page faults� The fault handler �in memory�c� then either

brings in a new page or unwriteprotects a page or does whatever needs to be done�

Page Fault handling Information

� The register CR� contains the linear address that caused the last page fault�

� Page Fault Error Code ��� bits��

bit cleared set

� page not present page level protection

� fault due to read fault due to write

� supervisor mode user mode

The rest are unde�ned� These are extracted in sys call�S�

The Translation Lookaside Bu�er �TLB� is a hardware cache for physical addresses of

the most recently used virtual addresses� When a virtual address is translated the
�� �rst

looks in the TLB to see if the information it needs is available� If not	 it has to make a

couple of memory references to get at the page directory and then the page table before it

can actually get at the page� Three physical memory references for address translation for

every logical memory reference would kill the system	 hence the TLB�

The TLB is �ushed if CR
 loaded or by task switch that changes CR�� It is explicitly

�ushed in Linux by calling invalidate�� which just reloads CR
�

����� Segments in the ��	

Segment registers are used in address translation to generate a linear address from a logical

�virtual� address�

linear address � segment base � logical address

The linear address is then translated into a physical address by the paging hardware�

Each segment in the system is described by a � byte segment descriptor which contains

all pertinent information �base	 limit	 type	 privilege��

The segments are�

Regular segments

���� ����� Memory Mangament ���

� code and data segments

System segments

� �TSS� task state segments

� �LDT� local descriptor tables

Characteristics of system segments�

� System segments are task speci�c�

� There is a Task State Segment �TSS� associated with each task in the system� It

contains the tss struct �sched�h�� The size of the segment is that of the tss struct

excluding the i��� union ��
� bytes�� It contains all the information necessary to

restart the task�

� The LDT�s contain regular segment descriptors that are private to a task� In Linux

there is one LDT per task� There is room for
� descriptors in the linux task struct�

The normal LDT generated by Linux has a size of �� bytes	 hence room for only

entries as above� Its contents are�

� LDT"�# Null �mandatory�

� LDT"�# user code segment descriptor�

� LDT"�# user data�stack segment descriptor�

� The user segments all have base��x�� so that the linear address is the same as the

logical address�

To keep track of all these segments	 the
�� uses a global descriptor table �GDT� that

is setup in memory by the system �located by the GDT register�� The GDT contains

a segment descriptors for each task state segment	 each local descriptor tablet and also

regular segments� The Linux GDT contains just two normal segment entries�

� GDT"�# is the null descriptor�

� GDT"�# is the kernel code segment descriptor�

� GDT"�# is the kernel data�stack segment descriptor�

The rest of the GDT is �lled with TSS and LDT system descriptors�

���� ����� Memory Mangament ���

� GDT"
���

� GDT"�# � TSS�	 GDT"�# � LDT�	

� GDT"�# � TSS�	 GDT"�# � LDT�

� � � �etc � � �

Note LDT�n� �� LDTn

� LDT"n# � the nth descriptor in the LDT of the current task�

� LDTn � a descriptor in the GDT for the LDT of the nth task�

At present the GDT has a total of ��� entries or room for as many as ��� tasks� The

kernel segments have base �xc������� which is where the kernel lives in the linear view�

Before a segment can be used	 the contents of the descriptor for that segment must be

loaded into the segment register� The
�� has a complex set of criteria regarding access to

segments so you can�t simply load a descriptor into a segment register� Also these segment

registers have programmer invisible portions� The visible portion is what is usually called

a segment register� cs	 ds	 es	 fs	 gs	 and ss�

The programmer loads one of these registers with a ��bit value called a selector� The

selector uniquely identi�es a segment descriptor in one of the tables� Access is validated

and the corresponding descriptor loaded by the hardware�

Currently Linux largely ignores the �overly�� complex segment level protection a�orded

by the
��� It is biased towards the paging hardware and the associated page level protec

tion� The segment level rules that apply to user processes are

�� A process cannot directly access the kernel data or code segments

�� There is always limit checking but given that every user segment goes from �x�� to

�xc������� it is unlikely to apply� �This has changed� and needs updating�

please��

����� Selectors in the ��	

A segment selector is loaded into a segment register �cs	 ds	 etc�� to select one of the regular

segments in the system as the one addressed via that segment register�

Segment selector Format�

��
 � � �

index TI RPL

���� ����� Memory Mangament ���

TI Table indicator�

� means selector indexes into GDT

� means selector indexes into LDT

RPL Privelege level� Linux uses only two privelege levels�

� means kernel

 means user

Examples�

Kernel code segment

TI��	 index��	 RPL��	 therefore selector � �x�� �GDT"�#�

User data segment

TI��	 index��	 RPL�
	 therefore selector � �x�� �LDT"�#�

Selectors used in Linux�
TI index RPL selector segment

� � � �x�� kernel code GDT"�#

� � � �x�� kernel data�stack GDT"�#

�
 � ��� ��� GDT"
#

� �
 �x�F user code LDT"�#

� �
 �x�� user data�stack LDT"�#

Selectors for system segments are not to be loaded directly into segment registers� Instead

one must load the TR or LDTR�

On entry into syscall�

� ds and es are set to the kernel data segment ��x���

� fs is set to the user data segment ��x��� and is used to access data pointed to by

arguments to the system call�

� The stack segment and pointer are automatically set to ss� and esp� by the interrupt

and the old values restored when the syscall returns�

����� Segment descriptors

There is a segment descriptor used to describe each segment in the system� There are

regular descriptors and system descriptors� Here�s a descriptor in all its glory� The strange

���� ����� Memory Mangament ��

format is essentally to maintain compatibility with the ���� Note that it takes � bytes�
����� �� �� �� �� ����� �� �� �� ����� ����� ����

Base G D R U Limit P DPL S TYPE Segment Base Segment Limit

����� ����� ���� ����

Explanation�

R reserved ���

DPL � means kernel	
 means user

G � means �K granularity �Always set in Linux�

D � means default operand size
�bits

U programmer de�nable

P � means present in physical memory

S � means system segment	 � means normal code or data segment�

Type There are many possibilities� Interpreted di�erently for system and normal descriptors�

Linux system descriptors�

TSS� P��	 DPL��	 S��	 type��	 limit � �
� room for � tss struct�

LDT� P��	 DPL��	 S��	 type��	 limit � �
 room for
 segment descriptors�

The base is set during fork��� There is a TSS and LDT for each task�

Linux regular kernel descriptors� �head�S�

code� P��	 DPL��	 S��	 G��	 D��	 type�a	 base��xc�������	 limit��x
��

data� P��	 DPL��	 S��	 G��	 D��	 type��	 base��xc�������	 limit��x
��

The LDT for task��� contains� �sched�h�

code� P��	 DPL�
	 S��	 G��	 D��	 type�a	 base��xc�������	 limit��x�f

data� P��	 DPL�
	 S��	 G��	 D��	 type��	 base��xc�������	 limit��x�f

The default LDT for the remaining tasks� �exec���

code� P��	 DPL�
	 S��	 G��	 D��	 type�a	 base��	 limit� �xb��

data� P��	 DPL�
	 S��	 G��	 D��	 type��	 base��	 limit� �xb��

The size of the kernel segments is �x����� pages ��KB pages since G�� � � Gigabyte�

The type implies that the permissions on the code segment is readexec and on the data

segment is readwrite�

Registers associated with segmentation� Format of segment register� �Only the selec

tor is programmer visible�

���� ����� Memory Mangament ���

��bit
�bit
�bit

selector physical base addr segment limit attributes

The invisible portion of the segment register is more conveniently viewed in terms of the

format used in the descriptor table entries that the programmer sets up� The descriptor

tables have registers associated with them that are used to locate them in memory� The

GDTR �and IDTR� are initialized at startup once the tables are de�ned� The LDTR is

loaded on each task switch�

Format of GDTR �and IDTR��

�bits ��bits

Linear base addr table limit

The TR and LDTR are loaded from the GDT and so have the format of the other

segment registers� The task register �TR� contains the descriptor for the currently executing

task�s TSS� The execution of a jump to a TSS selector causes the state to be saved in the

old TSS	 the TR is loaded with the new descriptor and the registers are restored from the

new TSS� This is the process used by schedule to switch to various user tasks� Note that

the �eld tss struct�ldt contains a selector for the LDT of that task� It is used to load

the LDTR� �sched�h�

����� Macros used in setting up descriptors

Some assembler macros are de�ned in sched�h and system�h to ease access and setting of

descriptors� Each TSS entry and LDT entry takes � bytes�

Manipulating GDT system descriptors�

� TSS�n�	

LDT�n� These provide the index into the GDT for the n�th task�

� LDT�n� is stored in the the ldt �eld of the tss struct by fork�

� set tssldt desc�n� addr� limit� type�

ulong �n points to the GDT entry to set �see fork�c�� The segment base �TSS or

LDT� is set to �xc������� addr� Speci�c instances of the above are	 where ltype

refers to the byte containing P	 DPL	 S and type�

set ldt desc�n� addr� ltype � �x��

P��	 DPL��	 S��	 type�� means LDT entry� limit � �
 �& room

for
 segment descriptors�

���� ����� Memory Mangament ���

set tss desc�n� addr� ltype � �x��

P��	 DPL��	 S��	 type � �	 means available ��
�� TSS limit � �
�

room for � tss struct�

� load TR�n�	

load ldt�n� load descriptors for task number n into the task register and ldt register�

� ulong get base �struct desc struct ldt� gets the base from a descriptor�

� ulong get limit �ulong segment� gets the limit �size� from a segment selector�

Returns the size of the segment in bytes�

� set base�struct desc struct ldt� ulong base�	

set limit�struct desc struct ldt� ulong limit�

Will set the base and limit for descriptors ��K granular segments�� The limit here is

actually the size in bytes of the segment�

� set seg desc�gate addr� type� dpl� base� limit�

Default values �x�������� �& D��	 P��	 G��

Present	 operation size is
� bit and max size is �M�

gate addr must be a �ulong ��

Appendix A

Bibliography

Two bibliographies for now� � �

A�� Normal Bibliography

���

Bibliography

"ANS# Draft Proposed American National Standard for Information Systems� Small

Computer System Interface � �SCSI���� �X
T���������	 revision ��h	 October

��	 ������

"Int��# Intel� i��	 Processor Programmer�s Reference Manual� Intel�McGrawHill	 �����

"LXT��# LXT SCSI Products� Speci�cation and OEM Technical Manual	 �����

"Nor��# Peter Norton� The Peter Norton Programmer�s Guide to the IBM PC� Bellevue	

Washington� Microsoft Press	 �����

A�� Annotated Bibliography

This anontated bibliography covers books on operating system theory as well as di�erent

kinds of programming in a un�x environment� The price marked may or may not be

an exact price	 but should be close enough for government work� �If you have a book

that you think should go in the bibliography� please write a short review of

it and send all the necessary information �title� author� publisher� ISBN� and

approximate price� and the review to johnsonm�sunsite�unc�edu�

This version is slowly going away	 in favor of a real bibliography�

Title� The Design of the UNIX Operating System

Author� Maurice J� Bach

Publisher� Prentice Hall	 ����

ISBN� ��
�������

Appr� Price� %�����

���

A�
� Annotated Bibliography ���

This is one of the books that Linus used to design Linux� It is a description

of the data structures used in the System V kernel� Many of the names of the

important functions in the Linux source come from this book	 and are named

after the algorithms presented here� For instance	 if you can�t quite �gure out

what exactly getblk��	 brelse��	 bread��	 breada��	 and bwrite�� are	 chapter

explains very well�

While most of the algorithms are similar or the same	 a few di�erences are

worth noting�

� The Linux bu�er cache is dynamically resized	 so the algorithm for dealing

with getting new bu�ers is a bit di�erent� Therefore the above referenced

explanation of getblk�� is a little di�erent than the getblk�� in Linux�

� Linux does not currently use streams	 and if�when streams are implemented

for Linux	 they are likely to have somewhat di�erent semantics�

� The semantics and calling structure for device drivers is di�erent� The con

cept is similar	 and the chapter on device drivers is still worth reading	 but

for details on the device driver structures	 the The Linux Kernel Hackers�

Guide is the proper reference�

� The memory management algorithms are somewhat di�erent�

There are other small di�erences as well	 but a good understanding of this text

will help you understand the Linux source�

Title� Advanced Programming in the UNIX Environment

Author� W� Richard Stevens

Publisher� Addison Wesley	 ����

ISBN� ������
���

Appr� Price� %�����

This excellent tome covers the stu� you really have to know to write real un�x

programs� It includes a discussion of the various standards for un�x implemen

tations	 including POSIX	 X�Open XPG
	 and FIPS	 and concentrates on two

implementations	 SVR� and prerelease ��� BSD	 which it refers to as ��
 BSD�

The book concentrates heavily on application and fairly complete speci�cation	

and notes which features relate to which standards and releases�

The chapters include� Unix Standardization and Implementations	 File I�O	

Files and Directories	 Standard I�O Library	 System Data Files and Information	

The Environment of a Unix Process	 Process Control	 Process Relationships	

A�
� Annotated Bibliography ���

Signals	 Terminal I�O	 Advanced I�O �nonblocking	 streams	 async	 memory

mapped	 etc��	 Daemon Processes	 Interprocess Communication	 Advanced In

terprocess Communication	 and some example applications	 including chapters

on A Database Library	 Commmunicating with a PostScript Printer	 A Modem

Dialer	 and then a seemingly misplaced �nal chapter on Pseudo Terminals�

I have found that this book makes it possible for me to write useable programs

for un�x� It will help you achieve POSIX compliance in ways that won�t break

SVR� or BSD	 as a general rule� This book will save you ten times its cost in

frustration�

Title� Advanced ��
�� Programming Techniques

Author� James L� Turley

Publisher� Osborne McGrawHill	 ����

ISBN� ������
���

Appr� Price� %�����

This book covers the ��
�� quite well	 without touching on any other hardware�

Some code samples are included� All major features are covered	 as are many of

the concepts needed� The chapters of this book are� Basics	 Memory Segmen

tation	 Privilege Levels	 Paging	 Multitasking	 Communicating Among Tasks	

Handling Faults and Interrupts	 ����� Emulation	 ���� Emulation	 Debugging	

The ��
�� Numeric Processor Extension	 Programming for Performance	 Re

set and Real Mode	 Hardware	 and a few appendices	 including tables of the

memory management structures as a handy reference�

The author has a good writing style� If you are technically minded	 you will

�nd yourself caught up just reading this book� One strong feature of this book

for Linux is that the author is very careful not to explain how to do things

under DOS	 nor how to deal with particular hardware� In fact	 the only times

he mentions DOS and PCcompatible hardware are in the introduction	 where

he promises never to mention them again�

Title� The C Programming Language	 second edition

Author� Brian W� Kernighan and Dennis M� Ritchie

Publisher� Prentice Hall	 ����

ISBN� ��
���
��� �paper� ��
���
��� �hard�

Appr� Price� %
����

A�
� Annotated Bibliography ���

The C programming bible� Includes a C tutorial	 un�x interface reference	 C

reference	 and standard library reference�

You program in C	 you buy this book� It�s that simple�

Title� Operating Systems� Design and Implementation

Author� Andrew S� Tanenbaum

Publisher� Prentice Hall	 ����

ISBN� ��
�
�����

Appr� Price� %�����

This book	 while a little simplistic in spots	 and missing some important ideas	

is a fairly clear exposition of what it takes to write an operating system� Half

the book is taken up with the source code to a un�x clone called Minix	 which is

based on a microkernel	 unlike Linux	 which sports a monolithic design� It has

been said that Minix shows that it is possible to to write a microkernelbased

un�x	 but does not adequately explain why one would do so�

Linux was originally intended to be a free Minix replacement�� In fact	 it was

originally to be binarycompatible with Minix
��� Minix
�� was the develop

ment environment under which Linux was bootstrapped� No Minix code is in

Linux	 but vesitiges of this heritage live on in such things as the minix �lesystem

in Linux� Early in Linux�s existence	 Andrew Tanenbaum started a �ame war

with Linus about OS design	 which was interesting	 if not enlightening� � �

However	 this book might still prove worthwhile for those who want a basic

explanation of OS concepts	 as Tanenbaum�s explanations of the basic concepts

remain some of the clearer �and more entertaining	 if you like to be entertained�

available� Unfortunately	 basic is the key work here	 as many things such as

virtual memory are not covered at all�

Title� Modern Operating Systems

Author� Andrew S� Tanenbaum

Publisher� Prentice Hall	 ����

ISBN� ��
�������

Appr� Price� %�����

�Linus� Minix� Linus tells us�

A�
� Annotated Bibliography ���

The �rst half of this book is a rewrite of Tanenbaum�s earlier Operating Systems	

but this book covers several things that the earlier book missed	 including such

things as virtual memory� Minix is not included	 but overviews of MSDOS and

several distributed systems are� This book is probably more useful to someone

who wants to do something with his or her knowlege than Tanenbaum�s earlier

Operating Systems� Design and Implementation� Some clue as to the reason

may be found in the title� � � However	 what DOS is doing in a book on modern

operating systems	 many have failed to discover�

Title� Operating Systems

Author� William Stallings

Publisher� Macmillan	 ���� ���������
��

ISBN� ����������

Appr� Price� %�����

A very thorough text on operating systems	 this book gives more indepth cov

erage of the topics covered in Tannebaum�s books	 and covers more topics	 in a

much brisker style� This book covers all the major topics that you would need to

know to build an operating system	 and does so in a clear way� The author uses

examples from three major systems	 comparing and contrasting them� un�x	

OS��	 and MVS� With each topic covered	 these example systems are used to

clarify the points and provide an example of an implementation�

Topics covered in Operating Systems include threads	 realtime systems	 mul

tiprocessor scheduling	 distributed systems	 process migration	 and security	 as

well as the standard topics like memory management and scheduling� The sec

tion on distributed processing appears to be uptodate	 and I found it very

helpful�

Title� UNIX Network Programming

Author� W� Richard Stevens

Publisher� Prentice Hall	 ����

ISBN� ��
�������

Appr� Price� %�����

This book covers several kinds of networking under un�x	 and provides very

A�
� Annotated Bibliography ���

thorough references to the forms of networking that it does not cover directly�

It covers TCP�IP and XNS most heavily	 and fairly exhaustively describes how

all the calls work� It also has a description and sample code using System V�s

TLI	 and pretty complete coverage of System V IPC� This book contains a lot

of source code examples to get you started	 and many useful proceedures� One

example is code to provide useable semaphores	 based on the partially broken

implementation that System V provides�

Title� Programming in the UNIX environment

Author� Brian W� Kernighan and Robert Pike

Publisher� Prentice Hall	 ����

ISBN� ��
�
���� �hardcover� ��
�
����X �paperback�

Appr� Price� %�����

no abstract

Title� Writing UNIX Device Drivers

Author� George Pajari

Publisher� Addison Wesley	 ����

ISBN� ������
���

Appr� Price� %
����

This book is written by the President and founder of Driver Design Labs	

a company which specializes in the development of un�x device drivers� This

book is an excellent introduction to the sometimes wacky world of device driver

design� The four basic types of drivers �character	 block	 tty	 STREAMS� are

�rst discussed brie�y� Many full examples of device drivers of all types are

given	 starting with the simplest and progressing in complexity� All examples

are of drivers which deal with un�x on PCcompatible hardware� Chapters

include� Character Drivers I� A Test Data Generator Character Drivers II�

An A�D Converter Character Drivers III� A Line Printer Block Drivers I� A

Test Data Generator Block Drivers II� A RAM Disk Driver Block Drivers III� A

SCSI Disk Driver Character Drivers IV� The Raw Disk Driver Terminal Drivers

I� The COM� Port Character Drivers V� A Tape Drive STREAMS Drivers I�

A LoopBack Driver STREAMS Drivers II� The COM� Port �Revisited� Driver

A�
� Annotated Bibliography ��

Installation Zen and the Art of Device Driver Writing

Although many of the calls used in the book are not Linuxcompatible	 the

general idea is there	 and many of the ideas map directly into Linux�

Title� title

Author� author

Publisher� pub	yr

ISBN� isbn

Appr� Price� %�����

no abstract

Appendix B

Tour of the Linux kernel source

�This is an alpha release of a chapter written by Alessandro Rubini�

rubini�ipvvis�unipv�it� I�m including it here as it gets worked on for com�

ments��

This chapter tries to explain the Linux source code in an orderly manner	 trying to help

the reader to achieve a good understanding of how the source code is laid out and how

the most relevant unix features are implemented� The target is to help the experienced

C programmer who is not accustomed to Linux in getting familiar with the overall Linux

design� That�s why the chosen entry point for the kernel tour is the kernel own entry point�

system boot�

A good understanding of C language is required to understand this material	 as well as

some familiarity with both un�x concepts and the PC architecture� However	 no C code

will appear in this chapter	 but rather pointers to the actual code� The �nest issues of kernel

design are explained in other chapters of this guide	 while this chapter tends to remain an

informal overview�

Any pathname for �les referenced in this chapter is referred to the main sourcetree

directory	 usually �usr�src�linux�

Most of the information reported here is taken from the source code
of Linux release ���� Nonetheless references to later versions are
provided at times� Any paragraph within the tour shaped like this
one is meant to underline changes the kernel has undergone after
the ��� release� If no such paragraph is present then no changes
occurred up to release ����� � �������

Sometimes a paragraph like this occurs in the text� It is a pointer
to the right sources to get more information on the subject just
covered� Needless to say the source is the primary source�

���

B��� Booting the system ���

B�� Booting the system

When the PC is powered up	 the ��x�� processor �nds itself in real mode and executes

the code at address �xFFFF�	 which corresponds to a ROMBIOS address� The PC BIOS

performs some tests on the system and initializes the interrupt vector at physical address

�� After that it loads the �rst sector of a bootable device to �x�C��	 and jumps to it� The

device is usually the �oppy or the hard drive� The preceding description is quite a simpli�ed

one	 but it�s all that�s needed to understand the kernel initial workings�

The very �rst part of the Linux kernel is written in ���� assembly language

�boot�bootsect�S�� When run	 it moves itself to absolute address �x�����	 loads the next

� kBytes of code from the boot device to address �x�����	 and the rest of the kernel to

address �x������ The message �Loading���� is displayed during system load� Control is

then passed to the code in boot�Setup�S	 another realmode assembly source�

The setup portion identi�es some features of the host system and the type of vga board�

If requested to	 it asks the user to choose the video mode for the console� It then moves the

whole system from address �x����� to address �x����	 enters protected mode and jumps

to the rest of the system �at �x������

The next step is kernel decompression� The code at �x���� comes from zBoot�head�S

which initializes registers and invokes decompress kernel��	 which in turn is made up of

zBoot�inflate�c	 zBoot�unzip�c and zBoot�misc�c� The decompressed data goes to

address �x������ �� Meg�	 and this is the main reason why Linux can�t run with less than

� megs ram�

Encapsulation of the kernel in a gzip �le is accomplished by
Makefile and utilities in the zBoot directory� They are interesting
�les to look at�

Kernel release ������moved the boot and zBoot directories down to
arch�i	$%�boot� This change is meant to allow true kernel builds
for di�erent architectures� Nonetheless I�ll stick to i���
speci�c
information�

Decompressed code is executed at address �x������� �Maybe I�ve lost track of phys�

ical addresses� here� as I don�t know very well gas source code�	 where all the
�bit

setup is accomplished� IDT	 GDT and LDT are loaded	 the processor and coprocessor are

identi�ed	 and paging is setup� eventually	 the routine start kernel is invoked� The source

for the above operations is in boot�head�S� It is probably the trickiest code in the whole

kernel�

Note that if an error occurs during any of the preceding steps	 the computer will lockup�

The OS can�t deal with errors when it isn�t yet fully operative�

start kernel�� resides in init�main�c	 and never returns� Anything from now on is

B�
� Spinning the wheel ���

coded in C language	 left aside interrupt management and system call enter�leave �well	

most of the macros embed assembly code	 too��

B�� Spinning the wheel

After dealing with all the tricky questions	 start kernel�� initializes all the parts of the

kernel	 speci�cally�

� Sets the memory bounds and calls paging init���

� Initializes the traps	 IRQ channels and scheduling�

� Parses the command line�

� If requested to	 allocates a pro�ling bu�er�

� Initializes all the device drivers and disk bu�ering	 as well as other minor parts�

� Calibrates the delay loop �computes the �BogoMips� number��

� Checks if interrupt �� works with the coprocessor�

Finally	 the kernel is ready to move to user mode��	 in order to fork the init process	

whose code is in the same source �le� Process number � then	 the socalled idle task	 keeps

running in an in�nite idle loop�

The init process tries to execute �etc�init	 or �bin�init	 or �sbin�init�

If none of them succeeds	 code is provided to execute ��bin�sh �etc�rc� and fork a

root shell on the �rst terminal� This code dates back to Linux ����	 when the OS was made

by the kernel alone	 and no login process was available�

After exec��ing the init program from one of the standard places �let�s assume we

have one of them�	 the kernel has no direct control on the program �ow� Its role	 from now

on is to provide processes with system calls	 as well as servicing asynchronous events �such

as hardware interrupts�� Multitasking has been setup	 and it is now init who manages

multiuser access by fork��ing system daemons and login processes�

Being the kernel in charge of providing services	 the tour will proceed by looking at those

services �the �system calls��	 as well as by providing general ideas about the underlying data

structures and code organization�

B��� How the kernel sees a process ���

B�� How the kernel sees a process

&From the kernel point of view	 a process is an entry in the process table� Nothing more�

The process table	 then	 is one of the most important data structures within the sys

tem	 together with the memorymanagement tables and the bu�er cache� The individ

ual item in the process table is the task struct structure	 quite a huge one	 de�ned in

include�linux�sched�h� Within the task struct both lowlevel and highlevel informa

tion is kept� ranging from the copy of some hardware registers to the inode of the working

directory for the process�

The process table is both an array and a doublelinked list	 as well as a tree� The

physical implementation is a static array of pointers	 whose length is NR TASKS	 a constant

de�ned in include�linux�tasks�h	 and each structure resides in a reserved memory page�

The list structure is achieved through the pointers next task and prev task	 while the

tree structure is quite complex and will not be described here� You may wish to change

NR TASKS from the default vaue of ���	 but be sure to have proper dependency �les to force

recompilation of all the source �les involved�

After booting is over	 the kernel is always working on behalf of one of the processes	 and

the global variable current	 a pointer to a task struct item	 is used to record the running

one� current is only changed by the scheduler	 in kernel�sched�c� When	 however	 all

procecces must be looked at	 the macro for each task is used� It is conderably faster than

a sequential scan of the array	 when the system is lightly loaded�

A process is always running in either �user mode� or �kernel mode�� The main body

of a user program is executed in user mode and system calls are executed in kernel mode�

The stack used by the process in the two execution modes is di�erent�a conventional stack

segment is used for user mode	 while a �xedsize stack �one page	 owned by the process�

is used in kernel mode� The kernel stack page is never swapped out	 because it must be

available whenever a system call is entered�

System calls	 within the kernel	 exist as C language functions	 their �o�cial� name being

pre�xed by �sys �� A system call named	 for example	 burnout invokes the kernel function

sys burnout���

The system call mechanism is described in chapter � of
this guide� Looking at for each task and SET LINKS in
include�linux�sched!h can help understanding the list and tree
structures in the process table�

B�	� Creating and destroying processes ���

B�� Creating and destroying processes

A unix system creates a process though the fork�� system call	 and process termination is

performed either by exit�� or by receiving a signal� The Linux implementation for them

resides in kernel�fork�c and kernel�exit�c�

Forking is easy	 and fork�c is short and ready understandable� Its main task is �lling

the data structure for the new process� Relevant steps	 apart from �lling �elds	 are

� getting a free page to hold the task struct

� �nding an empty process slot �find empty process���

� getting another free page for the kernel stack page

� copying the father�s LDT to the child

� duplicating mmap information of the father

sys fork�� also manages �le descriptors and inodes�

The ��� kernel o�ers some vestigial support to threading and the
fork
 system call shows some hints to that� Kernel threads is
work
in
progress outside the mainstream kernel�

Exiting from a process is trickier	 because the parent process must be noti�ed about any

child who exits� Moreover	 a process can exit by being kill��ed by another process �these

are un�x features�� The �le exit�c is therefore the home of sys kill�� and the vairious

�avours of sys wait��	 in addition to sys exit���

The code belonging to exit�c is not described here�it is not that interesting� It deals

with a lot of details in order to leave the system in a consistent state� The POSIX standard	

then	 is quite demanding about signals	 and it must be dealt with�

B�	 Executing programs

After fork��ing	 two copies of the same program are running� One of them usually exec��s

another program� The exec�� system call must locate the binary image of the executable

�le	 load and run it� The word �load� doesn�t necessarily mean �copy in memory the binary

image�	 as Linux supports demand loading�

The Linux implementation of exec�� supports di�erent binary formats� This is accom

plished through the linux binfmt structure	 which embeds two pointers to functions�one

to load the executable and the other to load the library	 each binary format representing

B��� Accessing �lesystems ���

both the executable and the library� Loading of shared libraries is implemented in the same

source �le as exec�� is	 but let�s stick to exec�� itself�

The un�x systems provide the programmer with six �avours of the exec�� function� All

but one of them can be implemented as library functions	 and theLinux kernel implements

sys execve�� alone� It performs quite a simple task� loading the head of the executable	

and trying to execute it� If the �rst two bytes are �	��	 then the �rst line is parsed and an

interpreter is invoked	 otherwise the registered binary formats are sequentially tried�

The native Linux format is supported directly within fs�exec�c	 and the relevant func

tions are load aout binary and load aout library� As for the binaries	 the function load

ing an a�out executable ends up either in mmap��ing the disk �le	 or in calling read exec���

The former way uses the Linux demand loading mechanism to faultin program pages when

they�re accessed	 while the latter way is used when memory mapping is not supported by

the host �lesystem �for example the �msdos� �lesystem��

Late ��� kernels embed a revised msdos �lesystem which supports
mmap
� Moreover the struct linux binfmt is a linked list rather
than an array to allow loading a new binary format as a kernel
module� Finally the structure itself has been extended to access
format
related core
dump routines�

B�
 Accessing �lesystems

It is well known that the �lesystem is the most basic resource in a un�x system	 so basic

and ubiquitous that it needs a more handy name � I�ll stick to the standard practice of

calling it simply �fs��

I�ll assume the reader already knows the basic un�x fs ideas � access permissions	

inodes	 the superblock	 mounting and umounting� Those concepts are well explained by

smarter authors than me within the standard un�x literature	 so I won�t duplicate their

e�orts and I�ll stick to Linux speci�c issues�

While the �rst Unices used to support a single fs type	 whose structure was widespread

in the whole kernel	 today�s practice is to use a standardized interface between the kernel

and the fs	 in order to ease data interchange across architectures� Linux itself provides

a standardized layer to pass information between the kernel and each fs module� This

interface layer is called VFS	 for �virtual �lesystem��

Filesystem code is therefore split into two layers� the upper layer is concerned with the

management of kernel tables and data structures	 while the lower layer is made up of the

set of fsdependent functions	 and is invoked through the VFS data structures�

All the fsindependent material resides in the fs���c �les� They address the following

B�� Quick Anatomy of a Filesystem Type �
�

issues�

� Managing the bu�er chache �buffer�c��

� Responding to the fcntl�� and ioctl�� system calls �fcntl�c and ioctl�c��

� Mapping pipes and �fos on inodes and bu�ers �fifo�c	 pipe�c��

� Managing �le and inodetables �file table�c	 inode�c��

� Locking and unlocking �les and records �locks�c��

� Mapping names to inodes �namei�c	 open�c��

� Implementing the tricky select�� function �select�c��

� Providing information �stat�c��

� mounting and umounting �lesystems �super�c��

� exec��ing executables and dumping cores �exec�c��

� Loading the various binary formats �bin fmt��c	 as outlined above��

The VFS interface	 then	 consists of a set of relatively highlevel operations which are in

voked from the fsindependent code and are actually performed by each �lesystem type� The

most relevant structures are inode operations and file operations	 though they�re not

alone� other structures exist as well� All of them are de�ned within include�linux�fs�h�

The kernel entry point to the actual �le system is the structure file system type�

An array of file system types is embodied within fs�filesystems�c and it is refer

enced whenever a mount is issued� The function read super for the relevant fs type is

then in charge of �lling a struct super block item	 which in turn embeds a struct

super operations and a struct type sb info� The former provides pointers to generic fs

operations for the current fstype	 the latter embeds speci�c information for the fstype�

The array of �lesystem types has been turned in a linked list to
allow loading new fs types as kernel modules� The function �un

	register filesystem is coded within fs�super!c�

B�� Quick Anatomy of a Filesystem Type

The role of a �lesystem type is to perform the lowlevel tasks used to map the relatively

high level VFS operations on the physical media �disks	 network or whatever�� The VFS

B�� Quick Anatomy of a Filesystem Type �
�

interface is �exible enough to allow support for both conventional un�x �lesystems and

exotic situations such as the msdos and umsdos types�

Each fstype is made up of the following items	 in addition to its own directory�

� An entry in the file systems� array �fs�filesystems�c��

� The superblock include �le �include�linux�type fs sb�h��

� The inode include �le �include�linux�type fs i�h��

� The generic own include �le �include�linux�type fs�h��

� Two 	include lines within include�linux�fs�h	 as well as the entries in struct

super block and struct inode�

The own directory for the fs type contains all the real code	 responsible of inode and

data management�

The chapter about procfs in this guide uncovers all the details
about low
level code and VFS interface for that fs type� Source
code in fs�procfs is quite understandable after reading the chap

ter�

We�ll now look at the internal workings of the VFS mechanism	 and the minix �lesystem

source is used as a working example� I chose the minix type because it is small but complete�

moreover	 any other fs type in Linux derives from the minix one� The ext� type	 the defacto

standard in recent Linux installations	 is much more complex than that and its exploration

is left as an exercise for the smart reader�

When a minixfs is mounted	 minix read super �lls the super block structure with

data read from the mounted device� The s op �eld of the structure will then hold a pointer to

minix sops	 which is used by the generic �lesystem code to dispatch superblock operations�

Chaining the newly mounted fs in the global system tree relies on the following data

items �assuming sb is the super block structure and dir i points to the inode for the

mount point��

� sb��s mounted points to the rootdir inode of the mounted �lesystem

�MINIX ROOT INO��

� dir i��i mount holds sb��s mounted�

� sb��s covered holds dir i

B��� The console driver �
�

Umounting will eventually be performed by do umount	 which in turn invokes

minix put super�

Whenever a �le is accessed	 minix read inode comes into play� it �lls the systemwide

inode structure with �elds coming form minix inode� The inode��i op �eld is �lled

according to inode��i mode and it is responsible for any further operation on the �le� The

source for the minix functions just described are to be found in fs�minix�inode�c�

The inode operations structure is used to dispatch inode operations �you guessed it�

to the fstype speci�c kernel functions� the �rst entry in the structure is a pointer to a

file operations item	 which is the datamanagement equivalent of i op� The minix fs

type allows three instances of inodeoperation sets �for direcotries	 for �les and for symbolic

links� and two instances of �leoperation sets �symlinks don�t need one��

Directory operations �minix readdir alone� are to be found in fs�minix�dir�c� �le op

erations �read and write� appear within fs�minix�file�c and symlink operations �reading

and following the link� in fs�minix�symlink�c�

The rest of the minix directory implements the following tasks�

� bitmap�cmanages allocation and freeing of inodes and blocks �the ext� fs	 otherwise	

has two di�erent source �les��

� fsynk�c is responsible for the fsync�� system calls � it manages direct	 indirect and

double indirect blocks �I assume you know about them	 it�s common un�x knowledge��

� namei�c embeds all the namerelated inode operations	 such as creating and destroying

nodes	 renaming and linking�

� truncate�c performs truncation of �les�

B�� The console driver

Being the main I�O device on most Linux boxes	 the console driver deserves some attention�

The source code related to the console	 as well as the other character drivers	 is to be found

in drivers�char	 and we�ll use this very directory as our referenece point when naming

�les�

Console initialization is performed by the function tty init��	 in tty io�c� This func

tion is only concerned in getting major device numbers and calling the init function for each

device set� con init��	 then is the one related to the console	 and resides in console�c�

B��� The console driver �

Initialization of the console has changed quite a lot during ��� evo

lution� console init
 has been detatched from tty init
 and
is called directly by !!�!!�main!c� The virtual consoles are now
dynamically allocated and quite a good deal of code has changed�
So I�ll skip the details of initialization allocation and such�

B��� How �le operations are dispatched to the console

This paragraph is quite lowlevel	 and can be happily skipped over�

Needless to say	 a un�x device is accessed though the �lesystem� This paragraph de

tails all steps from the device �le to the actual console functions� Moreover	 the following

information is extracted from the �����
 source code	 and it may be slightly di�erent from

the ��� source�

When a device inode is opened	 the function chrdev open�� �or blkdev open��	

but we�ll stich to character devices� in ������fs�devices�c gets executed� This function

is reached by means of the structure def chr fops	 which in turn is referenced by

chrdev inode operations	 used by all the �lesystem types �see the previous section about

�lesystems��

chrdev open takes care of specifying the device operations by substituting the device

speci�c file operations table in the current filp and calls the speci�c open��� Device

speci�c tables are kept in the array chrdevs�	 indexed by the majour device number	 and

�lled by the same ������fs�devices�c�

If the device is a tty one �aren�t we aiming at the console��	 we come to the tty drivers	

whose functions are in tty io�c	 indexed by tty fops� Thus	 tty open�� calls init dev��	

which allocates any data structure needed by the device	 based on the minor device number�

The minor number is also used to retrieve the actual driver for the device	 which has

been registered through tty register driver��� The driver	 then	 is still another struc

ture used to dispatch computation	 just like file ops� it is concerned with writing and

controlling the device� The last data structure used in managing a tty is the line discipline	

described later� The line discipline for the console �and any other tty device� is set by

initialize tty struct��	 invoked by init dev�

Everything we touched in this paragraph is deviceindependent� The only console

speci�c particular is that console�c	 has registered its own driver during con init��� The

line discipline	 on the contrary	 in independent of the device�

The tty driver structure is fully explained within
�linux�tty driver!h�

�

The above information has been extracted from ������ source code�
It isn�t unlikely for your kernel to be somewhat di�erent ��This
information is subject to change without notice�	�

B��� The console driver �
�

B��� Writing to the console

When a console device is written to	 the function con write gets invoked� This function

manages all the control characters and escape sequences used to provide applications with

complete screen management� The escape sequences implemented are those of the vt��� ter

minal� This means that your environment should say TERM�vt��� when you are telnetting

to a nonLinux host� the best choice for local activities	 however	 is TERM�console because

the Linux console o�ers a superset of vt��� functionality�

con write��	 thus	 is mostly made up of nested switch statements	 used to handle a

�nite state automaton interpreting escape sequences one character at a time� When in

normal mode	 the character being printed is written directly to the video memory	 using

the current attribute� Within console�c	 all the �elds of struct vc are made accessible

through macros	 so any reference to �for example� attr	 does actually refer to the �eld in

the structure vc conscurrcons�	 as long as currcons is the number of the console being

referred to�

Actually vc cons in newer kernels is no longer an array of
structures it now is an array of pointers whose contents are
kmalloc
ed� The use of macros greatly simpli�ed changing the
approach because much of the code didn�t need to be rewritten�

Actual mapping and unmapping of the console memory to screen is performed by the

functions set scrmem�� �which copies data from the console bu�er to video memory� and

get scrmem �which copies back data to the console bu�er�� The private bu�er of the current

console is physically mapped on the actual video RAM	 in order to minimize the number of

data transfers� This means that get and set scrmem�� are static to console�c and

are called only during a console switch�

B��� Reading the console

Reading the console is accomplished through the linediscipline� The default �and unique�

line discipline in Linux is called tty ldisc N TTY� The line discipline is what �disciplines

input through a line�� It is another function table �we�re used to the approach	 aren�t

we��	 which is concerned with reading the device� With the help of termios �ags	 the line

discipline is what controls input from the tty� raw	 cbreak and cooked mode� select���

ioctl�� and so on�

The read function in the line discipline is called read chan��	 which reads the tty bu�er

independently of whence it came from� The reason is that character arrival through a tty

is managed by asynchronous hardware interrupts�

The line discipline N TTY is to be found in the same tty io!c
though later kernels use a di�erent n tty!c source �le�

B��� The console driver �
�

The lowest level of console input is part of keyboard management	 and thus it is handled

within keyboard�c	 in the function keyboard interrupt���

B��� Keyboard management

Keyboard management is quite a nightmare� It is con�ned to the �le keyboard�c	 which

is full of hexadecimal numbers to represent the various keycodes appearing in keyboards of

di�erent manifacturers�

I won�t dig in �keyboard�c	 because no relevant information is there to the kernel hacker�

For those readers who are really interested in the Linux keyboard
the best approach to keyboard!c is from the last line upward�
Lowest level details occur mainly in the �rst half of the �le�

B��� Switching the current console

The current console is switched through invocation of the function change console��	

which resides in tty io�c and is invoked by both keyboard�c and vt�c �the former switches

console in response to keypresses	 the latter when a program requests it by invoking an

ioctl�� call��

The actual switching process is performed in two steps	 and the function

complete change console�� takes care of the second part of it� Splitting the switch is

meant to complete the task after a possible handshake with the process controlling the

tty we�re leaving� If the console is not under process control	 change console�� calls

complete change console�� by itself� Process intervertion is needed to successfully switch

from a graphic console to a text one and viceversa	 and the X server �for example� is the

controlling process of its own graphic console�

B��	 The selection mechanism

�selection� is the cut and paste facility for the Linux text consoles� The mechanism is

mainly handled by a userlevel process	 which can be instantiated by either selection or

gpm� The userlevel program uses ioctl�� on the console to tell the kernel to highlight a

region of the screen� The selected text	 then	 is copied to a selection bu�er� The bu�er is a

static entity in console�c� Pasting text is accomplished by �manually� pushing characters

in the tty input queue� The whole selection mechanism is protected by 	ifdef so users can

disable it during kernel con�guration to save a few kilobytes of ram�

Selection is a verylowlevel facility	 and its workings are hidden from any other kernel

B��� The console driver �
�

activity� This means that most 	ifdef�s simply deals with removing the highlight before

the screen is modi�ed in any way�

Newer kernels feature improved code for selection and the mouse
pointer can be highlighted independently of the selected text
������� and later	� Moreover from ������ onward a dynamic bu�er
is used for selected text rather than a static one making the kernel
�kB smaller�

B��� ioctl��ling the device

The ioctl�� system call is the entry point for user processes to control the behaviour of de

vice �les� Ioctl management is spawned by ������fs�ioctl�c	 where the real sys ioctl��

resides� The standard ioctl requests are performed right there	 other �lerelated requests

are processed by file ioctl�� �same source �le�	 while any other request is dispatches to

the devicespeci�c ioctl�� function�

The ioctl material for console devices resides in vt�c	 because the console driver dis

patches ioctl requests to vt ioctl���

The information above refer to �����x� The ��� kernel doesn�t have
the �driver� table and vt ioctl
 is pointed to directly by the
file operations
 table�

Ioctl material is quite confused	 indeed� Some requests are related to the device	 and

some are related to the line discipline� I�ll try to summarize things for the ��� and the �����x

kernels� Anything happened in between�

The �����x series features the following approach� tty ioctl�c implements only line

discipline requests �namely n tty ioctl��	 which is the only n tty function outside of

n tty�c�	 while the file operations �eld points to tty ioctl�� in tty io�c� If the

request number is not resolved by tty ioctl��	 it is passed along to tty��driver�ioctl

or	 if it fails	 to tty��ldisc�ioctl� Driverrelated stu� for the console it to be found in

vt�c	 while line discipline material is in tty ioctl�c�

In the ��� kernel	 tty ioctl�� is in tty ioctl�c and is pointed to by generic tty

file operations� Unresolved requests are passed along to the speci�c ioctl function or to

the linediscipline code	 in a way similar to �����x�

Note that in both cases	 the TIOCLINUX request is in the deviceindependent code� This

implies that the console selection can be set by ioctlling any tty �set selection�� always

operates on the foreground console�	 and this is a security hole� It is also a good reason

to switch to a newer kernel	 where the problem is �xed by only allowing the superuser to

handle the selection�

A variety of requests can be issued to the console device	 and the best way to know

about them is to browse the source �le vt�c�

Appendix C

The GNU General Public License

Printed below is the GNU General Public License �the GPL or copyleft�	 under which Linux

is licensed� It is reproduced here to clear up some of the confusion about Linux�s copyright

status � Linux is not shareware	 and it is not in the public domain� The bulk of the Linux

kernel is copyright c� ���
 by Linus Torvalds	 and other software and parts of the kernel are

copyrighted by their authors� Thus	 Linux is copyrighted	 however	 you may redistribute it

under the terms of the GPL printed below�

GNU GENERAL PUBLIC LICENSE

Version �	 June ����

Copyright �C� ����	 ���� Free Software Foundation	 Inc� ��� Mass Ave	 Cambridge	 MA

���
�	 USA�

Everyone is permitted to copy and distribute verbatim copies of this license document	 but

changing it is not allowed�

C�� Preamble

The licenses for most software are designed to take away your freedom to share and change

it� By contrast	 the GNU General Public License is intended to guarantee your freedom

to share and change free software�to make sure the software is free for all its users� This

General Public License applies to most of the Free Software Foundation�s software and to

any other programwhose authors commit to using it� �Some other Free Software Foundation

software is covered by the GNU Library General Public License instead�� You can apply it

to your programs	 too�

When we speak of free software	 we are referring to freedom	 not price� Our General

Public Licenses are designed to make sure that you have the freedom to distribute copies

�
�

C�
� Terms and Conditions �
�

of free software �and charge for this service if you wish�	 that you receive source code or

can get it if you want it	 that you can change the software or use pieces of it in new free

programs� and that you know you can do these things�

To protect your rights	 we need to make restrictions that forbid anyone to deny you

these rights or to ask you to surrender the rights� These restrictions translate to certain

responsibilities for you if you distribute copies of the software	 or if you modify it�

For example	 if you distribute copies of such a program	 whether gratis or for a fee	 you

must give the recipients all the rights that you have� You must make sure that they	 too	

receive or can get the source code� And you must show them these terms so they know

their rights�

We protect your rights with two steps� ��� copyright the software	 and ��� o�er you this

license which gives you legal permission to copy	 distribute and�or modify the software�

Also	 for each author�s protection and ours	 we want to make certain that everyone

understands that there is no warranty for this free software� If the software is modi�ed by

someone else and passed on	 we want its recipients to know that what they have is not the

original	 so that any problems introduced by others will not re�ect on the original authors�

reputations�

Finally	 any free program is threatened constantly by software patents� We wish to avoid

the danger that redistributors of a free program will individually obtain patent licenses	 in

e�ect making the program proprietary� To prevent this	 we have made it clear that any

patent must be licensed for everyone�s free use or not licensed at all�

The precise terms and conditions for copying	 distribution and modi�cation follow�

C�� Terms and Conditions for Copying� Distribution� and

Modi�cation

�� This License applies to any program or other work which contains a notice placed

by the copyright holder saying it may be distributed under the terms of this General

Public License� The �Program�	 below	 refers to any such program or work	 and a

�work based on the Program� means either the Program or any derivative work under

copyright law� that is to say	 a work containing the Program or a portion of it	 either

verbatim or with modi�cations and�or translated into another language� �Hereinafter	

translation is included without limitation in the term �modi�cation��� Each licensee

is addressed as �you��

Activities other than copying	 distribution and modi�cation are not covered by this

C�
� Terms and Conditions �
�

License� they are outside its scope� The act of running the Program is not restricted	

and the output from the Program is covered only if its contents constitute a work

based on the Program �independent of having been made by running the Program��

Whether that is true depends on what the Program does�

�� You may copy and distribute verbatim copies of the Program�s source code as you

receive it	 in any medium	 provided that you conspicuously and appropriately publish

on each copy an appropriate copyright notice and disclaimer of warranty� keep intact

all the notices that refer to this License and to the absence of any warranty� and give

any other recipients of the Program a copy of this License along with the Program�

You may charge a fee for the physical act of transferring a copy	 and you may at your

option o�er warranty protection in exchange for a fee�

�� You may modify your copy or copies of the Program or any portion of it	 thus forming

a work based on the Program	 and copy and distribute such modi�cations or work

under the terms of Section � above	 provided that you also meet all of these conditions�

a� You must cause the modi�ed �les to carry prominent notices stating that you

changed the �les and the date of any change�

b� You must cause any work that you distribute or publish	 that in whole or in part

contains or is derived from the Program or any part thereof	 to be licensed as a

whole at no charge to all third parties under the terms of this License�

c� If the modi�ed program normally reads commands interactively when run	 you

must cause it	 when started running for such interactive use in the most ordinary

way	 to print or display an announcement including an appropriate copyright

notice and a notice that there is no warranty �or else	 saying that you provide a

warranty� and that users may redistribute the program under these conditions	

and telling the user how to view a copy of this License� �Exception� if the

Program itself is interactive but does not normally print such an announcement	

your work based on the Program is not required to print an announcement��

These requirements apply to the modi�ed work as a whole� If identi�able sections

of that work are not derived from the Program	 and can be reasonably considered

independent and separate works in themselves	 then this License	 and its terms	 do

not apply to those sections when you distribute them as separate works� But when

you distribute the same sections as part of a whole which is a work based on the

Program	 the distribution of the whole must be on the terms of this License	 whose

permissions for other licensees extend to the entire whole	 and thus to each and every

part regardless of who wrote it�

C�
� Terms and Conditions ���

Thus	 it is not the intent of this section to claim rights or contest your rights to

work written entirely by you� rather	 the intent is to exercise the right to control the

distribution of derivative or collective works based on the Program�

In addition	 mere aggregation of another work not based on the Program with the Pro

gram �or with a work based on the Program� on a volume of a storage or distribution

medium does not bring the other work under the scope of this License�

� You may copy and distribute the Program �or a work based on it	 under Section ��

in object code or executable form under the terms of Sections � and � above provided

that you also do one of the following�

a� Accompany it with the complete corresponding machinereadable source code	

which must be distributed under the terms of Sections � and � above on a medium

customarily used for software interchange� or	

b� Accompany it with a written o�er	 valid for at least three years	 to give any third

party	 for a charge no more than your cost of physically performing source distri

bution	 a complete machinereadable copy of the corresponding source code	 to be

distributed under the terms of Sections � and � above on a medium customarily

used for software interchange� or	

c� Accompany it with the information you received as to the o�er to distribute

corresponding source code� �This alternative is allowed only for noncommercial

distribution and only if you received the program in object code or executable

form with such an o�er	 in accord with Subsection b above��

The source code for a work means the preferred form of the work for making mod

i�cations to it� For an executable work	 complete source code means all the source

code for all modules it contains	 plus any associated interface de�nition �les	 plus

the scripts used to control compilation and installation of the executable� However	

as a special exception	 the source code distributed need not include anything that is

normally distributed �in either source or binary form� with the major components

�compiler	 kernel	 and so on� of the operating system on which the executable runs	

unless that component itself accompanies the executable�

If distribution of executable or object code is made by o�ering access to copy from

a designated place	 then o�ering equivalent access to copy the source code from the

same place counts as distribution of the source code	 even though third parties are

not compelled to copy the source along with the object code�

�� You may not copy	 modify	 sublicense	 or distribute the Program except as expressly

provided under this License� Any attempt otherwise to copy	 modify	 sublicense or

C�
� Terms and Conditions ���

distribute the Program is void	 and will automatically terminate your rights under

this License� However	 parties who have received copies	 or rights	 from you under

this License will not have their licenses terminated so long as such parties remain in

full compliance�

�� You are not required to accept this License	 since you have not signed it� However	

nothing else grants you permission to modify or distribute the Program or its deriva

tive works� These actions are prohibited by law if you do not accept this License�

Therefore	 by modifying or distributing the Program �or any work based on the Pro

gram�	 you indicate your acceptance of this License to do so	 and all its terms and

conditions for copying	 distributing or modifying the Program or works based on it�

�� Each time you redistribute the Program �or any work based on the Program�	 the

recipient automatically receives a license from the original licensor to copy	 distribute

or modify the Program subject to these terms and conditions� You may not impose

any further restrictions on the recipients� exercise of the rights granted herein� You

are not responsible for enforcing compliance by third parties to this License�

�� If	 as a consequence of a court judgment or allegation of patent infringement or for any

other reason �not limited to patent issues�	 conditions are imposed on you �whether

by court order	 agreement or otherwise� that contradict the conditions of this License	

they do not excuse you from the conditions of this License� If you cannot distribute

so as to satisfy simultaneously your obligations under this License and any other

pertinent obligations	 then as a consequence you may not distribute the Program at

all� For example	 if a patent license would not permit royaltyfree redistribution of

the Program by all those who receive copies directly or indirectly through you	 then

the only way you could satisfy both it and this License would be to refrain entirely

from distribution of the Program�

If any portion of this section is held invalid or unenforceable under any particular

circumstance	 the balance of the section is intended to apply and the section as a

whole is intended to apply in other circumstances�

It is not the purpose of this section to induce you to infringe any patents or other

property right claims or to contest validity of any such claims� this section has the

sole purpose of protecting the integrity of the free software distribution system	 which

is implemented by public license practices� Many people have made generous contri

butions to the wide range of software distributed through that system in reliance on

consistent application of that system� it is up to the author�donor to decide if he or

she is willing to distribute software through any other system and a licensee cannot

impose that choice�

C�
� Terms and Conditions ���

This section is intended to make thoroughly clear what is believed to be a consequence

of the rest of this License�

�� If the distribution and�or use of the Program is restricted in certain countries either

by patents or by copyrighted interfaces	 the original copyright holder who places the

Program under this License may add an explicit geographical distribution limitation

excluding those countries	 so that distribution is permitted only in or among countries

not thus excluded� In such case	 this License incorporates the limitation as if written

in the body of this License�

�� The Free Software Foundation may publish revised and�or new versions of the General

Public License from time to time� Such new versions will be similar in spirit to the

present version	 but may di�er in detail to address new problems or concerns�

Each version is given a distinguishing version number� If the Program speci�es a

version number of this License which applies to it and �any later version�	 you have

the option of following the terms and conditions either of that version or of any later

version published by the Free Software Foundation� If the Program does not specify

a version number of this License	 you may choose any version ever published by the

Free Software Foundation�

��� If you wish to incorporate parts of the Program into other free programs whose dis

tribution conditions are di�erent	 write to the author to ask for permission� For

software which is copyrighted by the Free Software Foundation	 write to the Free

Software Foundation� we sometimes make exceptions for this� Our decision will be

guided by the two goals of preserving the free status of all derivatives of our free

software and of promoting the sharing and reuse of software generally�

NO WARRANTY

��� BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE	 THERE IS NO

WARRANTY FOR THE PROGRAM	 TO THE EXTENT PERMITTED BY AP

PLICABLE LAW� EXCEPT WHEN OTHERWISE STATED IN WRITING THE

COPYRIGHT HOLDERS AND�OR OTHER PARTIES PROVIDE THE PRO

GRAM �AS IS� WITHOUT WARRANTY OF ANY KIND	 EITHER EXPRESSED

OR IMPLIED	 INCLUDING	 BUT NOT LIMITED TO	 THE IMPLIED WAR

RANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PUR

POSE� THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF

THE PROGRAM IS WITH YOU� SHOULD THE PROGRAM PROVE DEFEC

TIVE	 YOU ASSUME THE COST OF ALL NECESSARY SERVICING	 REPAIR

OR CORRECTION�

C��� How to Apply These Terms ��

��� IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAWOR AGREED TO IN

WRITING WILL ANY COPYRIGHT HOLDER	 OR ANY OTHER PARTY WHO

MAY MODIFY AND�OR REDISTRIBUTE THE PROGRAM AS PERMITTED

ABOVE	 BE LIABLE TO YOU FOR DAMAGES	 INCLUDING ANY GENERAL	

SPECIAL	 INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF

THE USE OR INABILITY TO USE THE PROGRAM �INCLUDING BUT NOT

LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR

LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE

PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS�	 EVEN IF SUCH

HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF

SUCH DAMAGES�

END OF TERMS AND CONDITIONS

C�� Appendix� How to Apply These Terms to Your New

Programs

If you develop a new program	 and you want it to be of the greatest possible use to the public	

the best way to achieve this is to make it free software which everyone can redistribute and

change under these terms�

To do so	 attach the following notices to the program� It is safest to attach them to the

start of each source �le to most e�ectively convey the exclusion of warranty� and each �le

should have at least the �copyright� line and a pointer to where the full notice is found�

hone line to give the program�s name and a brief idea of what it does�i Copyright

c� ��yy hname of authori

This program is free software� you can redistribute it and�or modify it under

the terms of the GNU General Public License as published by the Free Software

Foundation� either version � of the License	 or �at your option� any later version�

This program is distributed in the hope that it will be useful	 but WITHOUT

ANY WARRANTY� without even the implied warranty of MERCHANTABIL

ITY or FITNESS FOR A PARTICULAR PURPOSE� See the GNU General

Public License for more details�

You should have received a copy of the GNU General Public License along with

this program� if not	 write to the Free Software Foundation	 Inc�	 ��� Mass Ave	

Cambridge	 MA ���
�	 USA�

C��� How to Apply These Terms ���

Also add information on how to contact you by electronic and paper mail�

If the program is interactive	 make it output a short notice like this when it starts in an

interactive mode�

Gnomovision version %&� Copyright
C �&yy name of author Gnomovision

comes with ABSOLUTELY NO WARRANTY� for details type)show w�! This is

free software� and you are welcome to redistribute it under certain

conditions� type)show c� for details!

The hypothetical commands �show w� and �show c� should show the appropriate parts

of the General Public License� Of course	 the commands you use may be called something

other than �show w� and �show c�� they could even be mouseclicks or menu items � whatever

suits your program�

You should also get your employer �if you work as a programmer� or your school	 if any	

to sign a �copyright disclaimer� for the program	 if necessary� Here is a sample� alter the

names�

Yoyodyne	 Inc�	 hereby disclaims all copyright interest in the program �Gnomo

vision� �which makes passes at compilers� written by James Hacker�

hsignature of Ty Cooni	 � April ���� Ty Coon	 President of Vice

This General Public License does not permit incorporating your program into propri

etary programs� If your program is a subroutine library	 you may consider it more useful

to permit linking proprietary applications with the library� If this is what you want to do	

use the GNU Library General Public License instead of this License�

