
Booting Linux: The History and the Future

Werner Almesberger

Werner.Almesberger@ep.ch

June 25, 2000

Abstract

Booting an operating system means to mediate be-

tween a usually very basic, and frequently unreli-

able system environment (e.g. the PC BIOS), the

functionality required by the operating system it-

self, and the sometimes rather sophisticated setups

users wish to create.

From the humble beginnings of the oppy boot sec-

tor, the Linux boot process has grown rich function-

ality, with versatile boot loaders (LILO, LOADLIN,

GRUB, etc.), several boot image formats, and an

increasing variety of operations that can be done

even before the system is fully booted, e.g. load-

ing of driver modules before mounting the root �le

system.

The boot process is also becoming more diÆcult

with time: new peripherals with interesting func-

tionality and sometimes even more interesting prob-

lems get widely deployed and need to be supported,

users create new and complicated system con�gura-

tions and still need to be able to boot, and last but

not least, new functionality is constantly added to

the kernel, and some of it, e.g. new �le systems, can

also a�ect the boot process.

All the complications the boot process has to handle

are even worse during system installation, because

a large number of possible con�gurations must be

considered, but storage space is limited. Frequently

a single oppy disk has to suÆce for the �rst steps.

This paper describes the boot process under Linux,

the challenges it has to face, and how it evolved to

meet them. Besides this historical overview, which

also illustrates general design concepts, some more

recent additions are discussed in detail.

1 Introduction

The boot process consists of two major phases: (1)

loading the Linux kernel into memory and passing

control to it, and (2) initializing the normal oper-

ation environment. Some of the possible ways to

performs these steps are depicted in �gure 1.

Hardware startup

Linux kernel

Mount initrd

Firmware (BIOS)

Boot selector

Legacy OS

Linux loader boot loader
Linux−capable

Li
nu

x
ke

rn
el

B
oo

t l
oa

de
r

Mount root file system

/sbin/init

/linuxrc

System runs

Figure 1: Boot process overview.

While this paper focuses mainly on the i386 archi-

tecture, many concepts also apply to other architec-

tures supported by Linux.

1.1 Loading the kernel

The �rst phase is the domain of boot loaders. They

have to retrieve the kernel executable and possibly

additional data from some storage media, e.g. a

disk, or from an external source, e.g. from a boot

server on the network, load them at the right mem-

ory location, maybe change the execution mode of

the processor, and start the kernel.

Boot loaders typically perform some additional

tasks, like providing the kernel with parameters such

as information retrieved from the �rmware or the

boot command line. Some boot loaders can also act

as a boot selector and load other operating systems.

The duties of boot loaders and some common de-

signs are discussed in more detail in section 2. An

introduction to boot concepts on i386 in general can

be found in [1].

1.2 Up and running

Once the kernel is running, it initializes its inter-

nal data structures, detects hardware components

and activates the corresponding drivers, etc., until

it eventually becomes ready to run user-space pro-

grams. Before it can start the user-space environ-

ment, it needs to provide it with a �le system, so it

has to mount the root �le system �rst.

In order to mount the root �le system, the kernel

needs two things: it needs to know the media on

which the root �le system is located, and it needs

drivers to access that media. In the most common

con�guration, when the root �le system is simply

an ext2 partition on an IDE disk, this is simple: the

number of the root device is passed to the kernel as a

parameter, and the IDE driver is typically compiled

into the kernel.

1.3 Complications

Things get more complicated if the kernel has no

driver for the device. This is quite common for the

\generic" kernels that are used when installing a

new Linux system, because a kernel with all avail-

able drivers would simply be far too big, and some

drivers may also upset other hardware when probing

for their devices.

This problem is solved by the initrd mechanism,

which allows the use of a RAM disk before mount-

ing the actual root �le system. This RAM disk is

loaded by the boot loader. initrd is described in

section 3.

While initrd has proven to be very useful, the design

of the mechanism used to mount the root �le system

after initrd has completed its work was never quite

satisfactory. Also, other changes in the kernel made

it increasingly diÆcult to use that mechanism in a

\clean" way. Section 4 discusses those issues in more

detail.

1.4 The future

Three new challenges await the boot process in the

future: (1) the �rmware and any hardware the boot

loaders have to interface with will grow more func-

tionality | and, if the past is any indication of the

future, a richer set of bugs too. (2) �le systems con-

taining kernel images will become more complex,

e.g. journaling �le systems or RAID, and correctly

interpreting their content will be very diÆcult for

boot loaders. (3) people will want to load kernels

from other exotic sources, e.g. from the network,

using a secure connection.

Boot
process

New hard− and firmware

Linux system

advances
architecture configurations

More complex

Figure 2: The boot process is facing new challenges

from three directions.

While there is little choice but to teach the boot

loaders to deal with their immediate �rmware and

hardware environment, loading the kernel from dif-

�cult to access media can be greatly simpli�ed by

leaving most of the work to a Linux kernel. Section

5 elaborates further on this topic.

2 Boot loaders

A boot loader performs the following tasks:

� decide what to load, e.g. by prompting the user

� load the kernel and possibly additional data,

such as an initrd or parameters for the kernel

� set up an execution environment suitable for

the kernel, e.g. put the CPU in privileged mode

� run the kernel

2.1 Taxonomy

Boot loaders come in many sizes and shapes. As

shown in �gure 3, we will distinguish the following

four types of them:

� specialized loaders, e.g. the oppy boot sector

LinuxBIOS [2], SYSLINUX [3], Netboot [4]

� general loaders running under another operat-

ing system, e.g. LOADLIN [5], ArLo [6]

� �le system aware general loaders running on the

�rmware, e.g. Shoelace, GRUB [7], SILO

� �le system unaware general loaders running on

the �rmware, e.g. LILO [8]

FS−unaware

Specialized

FS−aware

By other OS

No abstraction

Device abstraction

File abstraction
User space

Operating system

Firmware

Hardware

Figure 3: Layers at which boot loaders interact with

the underlying services.

Specialized loaders typically know only one storage

device, e.g. ash memory or the oppy disk, on

which a small number of kernels is stored in some

format speci�c to the boot loader.

Boot loaders that run under another operating sys-

tem normally use the services provided by the host

operating system for reading the kernel image and

additional data. This frees them from having to

know the structure of the underlying �le system or

any properties of the actual store devices. One of

their disadvantages is that they have to take spe-

cial precautions when loading the kernel, in order

to keep the host operating system operational until

they are ready to run the Linux kernel, e.g. they

must not overwrite memory locations occupied by

the host operating system. Another disadvantage is

that the entire boot process takes longer than with

other boot loaders, because the host operating sys-

tem needs some time to boot too.

File system aware boot loaders are almost little op-

erating systems by themselves: they know the struc-

ture of one or more �le systems, they access devices

via the services provided by the �rmware, and some-

times, they may even have their own drivers to ac-

cess hardware directly.

File system unaware boot loaders rely on a third

party to map the on-disk data structures to a more

general and more convenient representation. E.g.

in the case of LILO, the so-called map installer

(/sbin/lilo) uses the �le system drivers already

contained in the Linux kernel to perform this map-

ping, and simply writes the list of data sector loca-

tions in its map �le. A description of LILO internals

can be found in [9].

2.2 File system awareness

The lack of �le system awareness is a common com-

plaint about LILO, and competing boot loaders ad-

vertize their ability to read �le systems without

prior mapping as one of their main features. It is

therefore interesting to compare the two approaches.

Figure 4 shows what a �le system aware boot loader

does when using the Second Extended �le system:

�rst, the �le is written to disk, via the ext2 �le sys-

tem driver. The �le system driver adds a bit of

meta information. At boot time, the boot loader

interprets the ext2 meta information and loads the

corresponding data sectors into memory. In order

to do so,it has to contain a simpli�ed version of the

�le system driver.

A �le system unaware boot loader (�gure 5) requires

an additional step after writing the �le: the map-

ping, during which the generalized meta information

is written. The boot loader uses this meta informa-

ext2

Kernel image

Kernel

Disk

Boot
loader

Meta data Kernel image data

ext2(ro)

Figure 4: Data ow with �le system aware boot

loader.

tion to retrieve the actual data. The meta data

generated by the �le system driver is not needed.

Kernel

Disk

Boot
loader

ext2

read list

Meta data (map file)
Kernel image data

Kernel image

Map

Meta data

Figure 5: Data ow with �le system unaware boot

loader.

File system unaware boot loaders have the main dis-

advantage that the map installer has to be run af-

ter adding new kernel images and after an already

mapped kernel image changes its on-disk location

for some reason.

However, they have one big advantage: if a �le sys-

tem is supported by the Linux kernel and if it ful�lls

some fairly basic properties, they can load a kernel

from it without requiring any change to the boot

loader or the map installer. And this is the main

reason why LILO was designed to be �le system un-

aware.

2.3 File system history and LILO

In the early days of Linux, the only boot loaders

available were the oppy boot sector and Shoelace,

a �le system aware boot loader inherited from

Minix. Shoelace only supported the Minix �le sys-

tem. Since also Linux supported only the Minix

�le system back then, this was no limitation. How-

ever, it became soon clear that the Minix �le sys-

tem, lacking some functionality traditionally found

in Unix �le systems, e.g. distinct creation, modi�-

cation, and access time for �les, and also restricting

�le names to 14 characters, was not good enough as

the primary �le system for Linux.

In order to allow for the implementation of other

�le systems, the VFS (Virtual File System) inter-

face was added, which quickly led to the creation

of a wide variety of new �le systems, among them

the Extended �le system, Xiafs (named after its au-

thor), and also a \big" variant of the Minix �le

system that raised the �le name length limit to a

whole thirty characters. There was �erce competi-

tion among the �le systems, and it was quite un-

certain which design would eventually prevail, or if

there would actually be a single \winner".

In all this confusion, one thing was clear: no mat-

ter what �le system one favoured, in order to boot

from the hard disk, the root �le system had to be

Minix, because Shoelace did not support anything

else. LILO was written to �ll this gap. Since imple-

menting and maintaining support for a large number

of di�erent �le systems (at that time there were al-

ready Minix, Extended (ext), and Xiafs in the main-

stream kernel, some people had ported BSD FFS,

and there was no end in sight) appeared hardly de-

sirable, and the boot loader should not prevent peo-

ple from experimenting with new �le system propos-

als, a �le system unaware design was chosen.

This approach turned out to be very successful.

Even today, LILO can boot from most disk �le sys-

tems supported by the Linux kernel. However, since

ext2 has become the de facto standard, and has been

so for many years, �le system aware boot loader de-

signs have been successfully tried again, and some

of them have already gained a certain popularity.

While ext2 was handling everybody's daily work,

�le system designers have been busy with the next

generation of �le systems, whose key feature is sup-

port for journaling. Considering that there are now

Minix

Big Minixextfs Xiafs

ext2
"modern" Unix
Fully featured

Limited Unix

ext3

?

Journaling
XFS JFSReiser

Figure 6: Evolution of the \standard" Linux �le

system.

(again) several competing proposals (�gure 6), it

seems likely that the need for the exibility o�ered

by a �le system unaware boot loader will again be-

come strong.

2.4 Other things to load

A Linux boot loader does not only load the kernel

image, but it has to give further data to the kernel,

e.g. the initial RAM disk, which allows the kernel to

set up a fully functional user space without accessing

any peripherals. This is discussed in section 3.

Other additional data is a parameter block used dur-

ing kernel initialization. It typically contains things

like the number of the device with the root parti-

tion, the desired video mode for the system console,

the boot command line, etc. The type of infor-

mation and its layout are architecture-speci�c. It

is also quite common that the parameter block is

merged from multiple sources, e.g. LILO can selec-

tively overwrite the default VGA mode.

2.5 i386 details

One problem that is constantly plaguing the authors

of boot loaders, particularly on the i386 platform,

are the various disk size limits imposed by hardware

or, more frequently, �rmware. A good discussion of

most known limits can be found in [10]. The usual

e�ect of using a hard disk that exceeds such a limit

is that the part of the disk beyond the limit is only

accessible under some circumstances.

One such limit that has earned particular fame in

the Linux world is the 1024 cylinder limit commonly

encountered when using LILO. It originates from

the BIOS, which only supports a maximum of 1024

cylinders in the traditional functions for accessing

hard disks. This limit is exceeded on all hard disks

larger than 8 GB, and sometimes even with smaller

ones. Since LILO uses the BIOS for all disk opera-

tions, all �les accessed by it had to be within the �rst

1024 cylinders of the hard disk. In 1995, an exten-

sion called \Enhanced Disk Drive Speci�cation" [11]

raised the limits of the BIOS interface by a factor

of roughly 240 to a more reasonable 273 bytes. Un-

fortunately, it took some more years until one could

be reasonably sure that correct implementations of

EDD were widely deployed. Support for EDD has

been added to a development version of LILO in

1999, and later versions released for general use and

maintained by John Co�man also support EDD.

1MB

16MB

64MB

End of

zImage

bzImage

initrd

Maximum amount of
memory reported by
int 0x15,0x88

Maximum amount of
memory accessible with
i286 BIOS functions

Maximum amount of
memory accessible in
real modeBoot sector

loaded by
BIOS or MBR

Free space for kernel
data

memory

Figure 7: Simpli�ed memory layout at boot time on

i386.

Another interesting problem on i386 are the various

memory size limits (�gure 7). First of all, in the so-

called real mode, the CPU has a 4+16 bit address

space giving it access to only 1 MB. Since the CPU is

in real mode when the boot sector is started, early

boot loaders were not able to load kernels (called

\Image") larger than several hundred kilobytes.1

This was soon found to be too con�ning, and com-

pressed kernel images were introduced. Compressed

kernels (called \zImage") were still limited to 512

kB, but once started, they uncompressed themselves

1Some of the lower address space is reserved for the BIOS

and video memory, and some space is also claimed by the

boot loader. This leaves 512 kB for loading the kernel.

to higher memory locations. This increased the

maximum kernel size to approximately 1 MB.

After a few years, also this became a problem, and a

mechanism was added to load bigger kernels, called

\bzImage". A bzImage is loaded above the 1 MB

barrier, then uncompresses itself, and moves the re-

sulting uncompressed kernel down to 1 MB. The

parameter block contained in the oppy boot sector

and the real mode setup code are still loaded at their

original addresses below 1 MB. This is described in

more detail at the end of this section.

Because zImage is inferior to bzImage in almost all

respects, support for it is likely to be phased out in

the near future.

In order to load the bzImage above 1 MB, the boot

loader either switches to a CPU mode giving ac-

cess to the full address space, or it runs still in real

mode but uses special BIOS functions for the copy.

Unfortunately, those BIOS functions originate from

the i286 era and may still use the so-called protected

mode of the i286 with a 8+16 bit address space, giv-

ing access only to 16 MB. While 15 MB2 should be

more than suÆcient for compressed kernels alone, it

also limits the maximum size of initrds, which use

the space not occupied by the kernel. Since the 16

MB limit comes from the boot loader but does not

exist in the kernel, it is likely to disappear in the

future. Some boot loaders are already using copy

mechanisms that do not have this restriction.

The next barrier is 64 MB, which is the amount of

memory that can be traditionally reported by the

BIOS. All newer BIOSes support mechanisms that

can report larger memory sizes, and kernels have

recently started using them. It is not clear if the 64

MB limit is likely to ever become a serious problem

for boot loaders.

The maximum kernel size is also limited by the page

tables the kernel sets up prior to its own initializa-

tion. For a long time, only 4 MB were mapped.

Since kernels started to exceed this limit, it was re-

cently raised to 8 MB.

It should be noted that all these restrictions only

apply to the kernel image loaded at boot time. Any

additional code loaded by modules can use all of the

memory the kernel is willing to provide.

2The lower megabyte is reserved for BIOS, boot loader,

video memory, etc.

The loading of a bzImage is a fairly intricate proce-

dure, as shown in �gure 8. First, the boot loader

loads the kernel setup sectors (1) and the com-

pressed kernel (2), and jumps to the setup code

(3). The bzImage consists of the compressed ker-

nel code (\text") and data, and a small piece of

uncompressed code for extracting the kernel. Once

�nished, the setup code jumps to the extractor (4).

Then, the kernel is uncompressed into a low memory

region below 1 MB (5), and a high memory region

after the end of the loaded bzImage (6). By us-

ing the low memory region, the extraction process

reduces its peak memory usage by 568 kB.

11
Kernel extractor

Kernel setup

Mover

(low)

K t+d

Kernel

Boot

loader

5 7 8

9

10

K t+d
6

(high)

Kernel text+data

(compressed)bzImage

0
4kB

8kB

1

0x90000

4

3

1MB

2

End

Figure 8: Loading a bzImage.

When the kernel is extracted, it needs to be moved

to 1 MB. This is done by a mover function which is

copied to a low address (7 and 8). After moving the

uncompressed kernel to its destination (9 and 10),

the mover jumps to the kernel entry point (11).

2.6 Adding new features

When adding new functionality to the boot process,

frequently the question arises where it should be

implemented { in the boot loader or in the kernel ?

Figure 9 illustrates this choice.

With a large number of di�erent architectures and

possibly a large number of boot loaders per archi-

Linux
kernel

Alpha

ARM

i386,ia64

m68k

MIPS(64)

PPC

S390

SuperH

(Ultra)SPARC

LOADLIN
LILO
GRUB

nuni

Etherboot

SysLinux
Netboot

...

...

Figure 9: Where to add a new feature ?

tecture, it is clear that additions requiring major

changes in boot loaders are not likely to be met

with much enthusiasm. With the number of sup-

ported architectures increasing, even architecture-

dependent changes should not be considered lightly.

The introduction of the initial RAM disk was the

last time a change a�ecting all architectures and

most boot loaders was made. Fortunately, most au-

thors agreed on the usefulness of initrd, and it is

well supported today.

More recent extensions of the boot process try to

stay within the kernel, e.g. the mechanisms to boot

Linux kernels from Linux combine an architecture-

speci�c part with a more general framework, and

recent improvements of mechanisms related to ini-

trd (see section 4) are completely architecture-

independent.

Section 3.5 continues this discussion, examining the

choice between kernel and user space.

3 Loading drivers

Only loading the kernel is sometimes not enough,

because the driver(s) needed to access the root �le

system may not be included in the kernel. This sec-

tion describes the reasons for this seemingly para-

doxical situation and the solution adopted for it.

3.1 Conicting drivers

Very early, many Linux distributions encountered

the problem that some of the drivers they needed

to access any further storage medium, e.g. the CD-

ROM, were conicting with the drivers they needed

in other cases.

This can happen quite easily with ISA cards, be-

cause the only way to probe for their presence used

to be to blindly write to registers at well-known ad-

dresses and to check if the card showed whatever

reaction was expected in this case. If two cards hap-

pened to have some well-known addresses in com-

mon and did not respond gracefully to incorrect ac-

cesses, e.g. by entering a state that could only be

left by following a complicated reset procedure or, in

extreme cases, only by a hardware reset, one could

not probe for one card without upsetting systems

that used the other one.

In order to avoid such conicts, distributions started

to use large numbers of pre-compiled kernels con-

taining only a small number of drivers each. Such

a distribution then either had to ship with several

oppy disks for all those kernels, or the user had to

pick the right kernel from the distribution medium

and make their own boot disk before installation.

This was hardly a satisfying situation.

The readily available solution to such problems was

the use of kernel modules, which can be loaded after

either performing a more detailed hardware con�g-

uration analysis than done by the kernel, or simply

after asking the user for advice.

3.2 Dynamic kernel composition

Loading modules before the kernel mounts the root

�le system is also desirable after installation, when

a customized kernel containing only the components

required on the respective system should be used.

Ideally, one would go through regular kernel con-

�guration and compile the kernel from scratch for

this, but most users would be rather unpleasantly

surprised by the daunting task of having to pick

the right set from more than a thousand con�g-

uration options, particularly since many mistakes

would lead to an unbootable system. Also, there are

usually some dependencies among options that are

not caught by the kernel con�guration system, so

certain choices could lead to obscure build failures.

Last but not least, building the kernel requires sev-

eral tools (compiler, etc.), which are not necessarily

installed on every system, and the build process may

also take a long time on slower machines.

Linking a pre-compiled monolithic kernel would

only o�er partial relief, because it still requires al-

most all of the tools needed for compilation, and

any conicts would make the entire linking process

fail.

Again, the most reasonable choice is to use modules.

The modules framework is regularly used by many

people and is therefore quite reliable. If there are

conicts among modules (e.g. missing or duplicate

symbols), the respective module and any modules

depending on it cannot be loaded, but this is still

safer than failing the entire build process.

In principle, a simpli�ed linker could be built on the

basis of modules, o�ering all the advantages of a

modular system, while avoiding the slight overhead

introduced by modules. For some reason, such a

linker was never implemented.

3.3 Chicken and modular eggs

The use of modules requires the presence of a �le

system.3 While an installation oppy disk can con-

tain a �le system, this does not help for other me-

dia, e.g. a CD-ROM or the scenario described in

the previous section. Also, every once in a while,

oppy disk drives appear that can be accessed via

the BIOS, but that are not properly handled by the

regular oppy driver.

Fortunately, there is already a program that { by

de�nition { knows how to read data from the boot

medium under all circumstances: the boot loader.

The logical conclusion was therefore to let the boot

loader load the modules too. In order to keep the

concept as exible as possible, and the work of the

boot loader simple, it loads a single �le that is pre-

sented to the kernel as a linear block of memory.

The kernel then uses it as a RAM disk. Therefore,

the mechanism is called \initial RAM disk" or short

3An alternative approach that is proposed every once in

a while is to teach the boot loader to link modules into the

kernel at boot time. The problems of this approach have

been discussed in section 2.6.

Kernel

Data

initrd

RAM disk
Loaded by
boot loader

Copied by RAM
disk driver

May be made available
/dev/initrdas

Figure 10: Loading an initial RAM disk.

\initrd". As a pleasant synergy e�ect, the RAM

disk driver automatically detects if the RAM disk is

compressed, and uncompresses it if necessary.

For debugging or for using the initrd mechanism

for other purposes than the initial RAM disk, the

boot command line option noinitrd can be used

to prevent automatic use of the memory block as a

RAM disk. Instead, its content is made available

via the block device /dev/initrd.

3.4 Using the initrd

Once the RAM disk is loaded, any regular Linux

programs can be run from it. Initrd can be used in

two modes: either for the regular root �le system,

so the program run is the usual /sbin/init, or as

an intermediate environment in which the system is

prepared for mounting the real �le system.

In the latter case, a program called /linuxrc is in-

voked to perform the necessary initialization. When

/linuxrc �nishes, the \real" root �le system is

mounted and it replaces the initial RAM disk. After

this, /sbin/init commences with the usual startup

procedures. The process of changing the root �le

system is described in section 4.

3.5 Size matters

The main limitation of an initial RAM disk is that

there has to be enough memory for the kernel, the

initrd �le as loaded by the boot loader, the RAM

disk extracted from it by the RAM disk driver, and

any other data the kernel needs at that time. This

limits the size of compressed initrds to roughly a

third of the memory not occupied by the kernel it-

self.

One obvious improvement is to free memory con-

taining the original initrd data immediately after it

has been read when building the RAM disk. This

will be implemented in the near future.

By the way, it is a common misconception that

the use of initrd automatically implies that many

megabytes of precious memory will be wasted. This

misconception comes from the fact that most pro-

grams are linked with the shared C library (libc),

and that some versions of libc are fairly large { typ-

ically up to around 4 MB. Even linking with the

static version of libc, which yields a program con-

taining only the library functions which are really

used, does not result in the desired size reduction.

E.g. a program that does nothing at all (main(){})

still gets larger than 200 kB.

One reason for this is that libc has many internal

dependencies, which require the inclusion of auxil-

iary components. When some of those dependencies

are removed, program sizes become more reason-

able, e.g. the example above shrinks to a mere 3

kB. More work is needed in this direction.

Another possibility is simply to refrain from using

any library at all. This is feasible for reasonably

simple programs. The micro-shell [12] is an example

for this.

4 Changing the root �le system

Changing the root �le system is similar to the task

of changing a carpet while still standing on it. Most

people would probably suggest to jump up while try-

ing to throw the new carpet under one's feet, and

to smooth any wrinkles afterwards. The �rst im-

plemented solution, called change_root, is actually

remarkably similar to this approach. It is described

in section 4.2.

A much lazier possibility is to roll out the new carpet

next to the old one and to just walk over. This

much more elegant approach, recently implemented

in a mechanism called pivot_root, is described in

section 4.3. A similar solution, involving layering

of the new root �le system on top of the old one,

is currently being worked on. Its current design is

described in section 4.4.

4.1 What's keeping it busy

Changing the root �le system is tricky, because the

design of Unix makes sure there is always something

accessing it. In particular, at least the following

items are \busy" if any process is running:

Mapped �les The executable of the process

and any shared libraries used by

it.

Terminal Standard input, output, and er-

ror of that process. Typically

/dev/console

Directories The current directory and the

current root directory of the

process.

Furthermore, the root �le system can also be busy

because of:

Mount points Mounted �le systems (e.g.

/proc or any auxiliary �le

systems)

Demons Demon processes or kernel

threads.

4.2 Feet in the air

Figure 11 illustrates the approach of awkwardly

jumping up while rearranging things underneath

one's feet. It works as follows:

� Kernel prepares initrd and starts /linuxrc

� /linuxrcmakes everything ready for mounting

the root �le system and writes the number of

the new root �le system device to /proc/sys/

kernel/real-root-dev

� When /linuxrc terminates, the kernel tries

to unmount the old root �le system and to

mount the �le system on the device described

in /proc/sys/kernel/real-root-dev instead

� Kernel runs /sbin/init

One of the design goals for change_root was to

make its use easy for shell scripts, in order to sim-

plify the transition to initrd.

/
Root and cwd
of process 1

/initrdnew_root

umount

root_dev

change_root

Figure 11: Changing the root �le system with

change root.

The following table shows how well this approach

handles things keeping the root �le system busy:

Mapped �les Disappear at process termina-

tion.

Terminal Closed at process termination.

Directories Not accessed after process ter-

mination.

Mount points Una�ected.

Demons Una�ected.

Mount points and demons are still a problem.

Mount points can be avoided by simply unmount-

ing everything before /linuxrc terminates. Demon

processes can be more diÆcult to avoid, and kernel

threads may refuse to disappear at all.

If change_root fails to unmount the old root �le

system (because it is kept busy by something), it

prints a warning and tries to mount it on a mount

point called /initrd on the new root �le system

instead. Once all accesses to the old root �le system

have been removed, it can the be unmounted like

any other mounted �le system. If no directory called

/initrd exists, change_root gives up and leaves

the old root �le system mounted but inaccessible.

4.3 Towards a general solution

While change_root is good enough for most pur-

poses, it has a few undesirable restrictions:

� It can only mount objects which exist as a block

device, which precludes NFS,4 SMB, etc.5

� Kernel threads have become quite popular and

some of them keep the root �le system busy.

� change_root can only be used once, which

makes it hard to debug initialization proce-

dures.

� If change_root fails to mount the new root �le

system, the system hangs.

Besides, all the device number magic and the hard-

coded names of change_root are just plain ugly.

Already at the time when change_root was intro-

duced, an alternative design based loosely on the

chroot system call was discussed. Recent improve-

ments in VFS have made it comparably easy to im-

plement, so this was �nally done.

/
Root and cwd of
all processes

old_rootnew_root

pivot_root

umountmount

current process)
(usually cwd of the

Figure 12: Changing the root �le system with

pivot root.

The new mechanism is called pivot_root and �gure

12 shows how it works:

� The new root �le system is mounted like any

other �le system.

� A directory is selected as the location for the

old (now current) root �le system.

� pivot_root is called with the name of the di-

rectory containing the new root �le system and

4
change root was originally able to mount NFS root �le

systems using the \NFS root" mechanism built into the ker-

nel. Support for this disappeared after a while during a reor-

ganization of the NFS code. Note that the new pivot root

mechanism can be used to cleanly replace and even general-

ize the NFS root mechanism. It is therefore likely that the

latter will be phased out in future kernels.
5Recent changes in VFS may allow mounting of such �le

systems even via their \anonymous" block device. However,

this would still be a fairly messy operation.

the name of the directory for the old root �le

system.

� pivot_root moves the current root �le sys-

tem to the directory for the old �le system and

makes the new root �le system the current root.

The most important di�erences to change_root are:

� An arbitrary �le system can become the new

root, including NFS, SMB, etc.

� pivot_root does not attempt to unmount the

old root �le system, yielding more predictable

behaviour than change_root with its two fall-

back levels.

� pivot_root can be invoked any number of

times, which allows cascading of root �le sys-

tem transitions, and makes it easier to debug

initialization scripts.

� pivot_root can be retried and is even re-

versible, which also helps debugging.

Unfortunately, this does not yet help against

demons and kernel threads keeping the old root �le

system busy. The solution chosen is based on the

observation that most demons and kernel threads

are actually not interested in the �le system. They

just keep it busy because they, like any other pro-

cess, reference their current directory and their cur-

rent root directory.6 pivot_root therefore scans all

processes and changes their current directory and

their current root directory if they point to the old

root.

This operation is admittedly rather ugly, and the

documented behaviour of pivot_root leaves it open

to change only root and current directory of the pro-

cess executing pivot_root. The implications of this

are described in the pivot root man pages included

in [13, 14].

Unlike change_root, which makes all changes in

a single step after /linuxrc exits, pivot_root al-

lows for a gradual switch to the new root �le sys-

tem. This requires a bit more cooperation from user

space for releasing any remaining references to the

old root �le system. The running executable and

6Kernel threads can release their references to these two

directories. Unfortunately, only very few kernel threads make

use of this possibility.

shared libraries accessed by it can be closed sim-

ply by exec'ing an executable on the new root �le

system. At the same time, the console can be con-

veniently closed and re-opened with the device �le

on the new root �le system.7

Although all those operations can in principle be

done before or after the call to pivot_root, it is

usually more convenient to change the root �le sys-

tem �rst, because this avoids accidental use of items

on the old root �le systems, e.g. shared libraries.

To summarize, with pivot_root, the situation is

now as follows:

Mapped �les Changed by exec.

Terminal Closed and re-opened.

Directories Changed with chdir and

chroot.

Mount points Una�ected (except for new

root, which is handled directly

by pivot_root)

Demons Current and root directory are

forcibly changed.

4.4 Union mounts

The need to forcibly change the current and root

directories of processes is the only remaining ugly

hack with pivot_root.

Alexander Viro is currently designing so-called

\union mounts", an extension of VFS that allows

multiple �le systems to be stacked at a single mount

point. The �le systems are accessed only when try-

ing to look up items on that mount point.

To return to the carpet analogy, this gives us a tiny

patch of ying carpet that we can use to avoid step-

ping on the real carpet while replacing it.

Although this work has not yet �nished at the time

of writing, one can already speculate on how it may

allow for a cleaner use of the concepts introduced

by pivot_root.

Figure 13 illustrates how this concept may work.

The �le systems can be either directly mounted and

unmounted at the root, or they can be moved from

or to other directories.

7When using devfs, a second instance of it should be

mounted on the new root �le system for this purpose.

umount

old_root

remount

new_root

mount
/

all processes
Root and cwd of

Figure 13: Changing the root �le system with union

mounts.

So the �nal situation is as follows:

Mapped �les Changed by exec.

Terminal Closed and re-opened.

Directories Directories change is transpar-

ent.

Mount points Una�ected (except if moving

mount points to root)

Demons Directories change is transpar-

ent.

The mechanism described in this section is likely to

be added to the mainstream kernel in the very near

future.

5 Linux boots Linux

With the infrastructure discussed so far, we can use

any �le system the kernel can mount as the root �le

system. Now wouldn't it be nice if we could also use

any �le the kernel can read as kernel or initrd ?

File system unaware boot loaders reach their lim-

its when �les are no longer stored in sequences of

data sectors on the disk, e.g. in the case of software

RAID, there may be multiple instances of the same

data block, and a RAID5 array in reconstruction

mode needs to perform calculations over multiple

data blocks in order to obtain the content of a block

on a defective volume. Worse yet, the �les may not

even be on a local disk, but maybe on an NFS or

HTTP server.

In principle, any boot loader can of course access

any resources the kernel can access too. The only

problem is that all the necessary functionality needs

to be rebuilt in the boot loader. And once half a

dozen �le systems, RAID, a TCP/IP stack, NFS,

SMB, DHCP, HTTP, etc. are added to a boot

loader, it probably looks like a complete operating

system : : :

5.1 The ultimate boot loader

: : : which brings us right to a very convenient so-

lution: there is already a program that can access

everything the kernel can access { it's the kernel it-

self. And all the other tools that might be needed

(e.g. DHCP and such) are conveniently available

too.

The only missing element is a means to boot a Linux

kernel from within Linux. The concept is basically

the same as for boot loaders running under some

other host operating system. However, some re-

quirements are slightly higher, because it is desir-

able to have a solution that can be easily adapted for

all platform supported by Linux, and also the range

of possible system con�gurations is wider than for

most other such boot loaders, e.g. it seems quite

unlikely that LOADLIN is ever used on multipro-

cessor systems. On the other hand, the work can be

simpli�ed by making small changes to the kernel.

Another requirement is to pass on data obtained

from the �rmware from kernel to kernel. E.g. on

i386, video mode, memory layout, SMP con�gura-

tion, etc. are retrieved either directly from the BIOS

or from memory areas initialized by the BIOS. Since

these memory areas may be overwritten by the ker-

nel in normal operation, they either need to be pro-

tected if booting kernels from Linux is desired, or

the information contained in them needs to be ex-

tracted and passed on to the next kernel.

Finally, some operations done during initialization,

e.g. SCSI or IDE bus scans, may take a signi�cant

amount of time. It would be desirable to pass this

information from kernel to kernel in order to speed

up the boot process.

There are currently at least three di�erent imple-

mentations that allow booting a Linux kernel from

Linux: bootimg, LOBOS, and Two Kernel Monte.

The last two are described in [15] and [16], respec-

tively. Bootimg is described in section 5.3 of this

paper.

5.2 What a waste ?

The concept of using a fully featured Unix kernel

as a boot loader may look like the perfect waste

of resources. In the section, we will consider the

implications on time, memory, and disk space.

Note that these calculations may not apply to spe-

cial environments like embedded systems or small

battery-powered devices, which may have very lit-

tle memory or use a slow CPU. Fortunately, the

exibility o�ered by the ability of booting a kernel

from Linux is hardly necessary in those cases, so an

optimized speci�c solution can be chosen.

First time: loading a kernel and an initrd takes time.

Since the kernel is probably compressed, some more

time is spent for uncompressing. If we assume that

any expensive bus scans are not repeated, and that

the hardware is not overly slow or obsolete, we ob-

tain:

1-2 sec Loading 1-2 MB (kernel and initrd)

1-2 sec Uncompressing kernel and initrd

1 sec Other overhead

3-5 sec

Considering that a normal reboot typically takes 20-

60 seconds, this is a reasonably small increase. Also,

reboots for con�guration changes or kernel updates

are much faster now, because the old kernel can

directly load the new one, without going through

BIOS or boot loader.

The peak memory utilization occurs when the kernel

acting as boot loader has loaded the next kernel

along with its compressed initrd. Assuming fairly

large kernels and initrds, we obtain:

1-2 MB Boot kernel (running)

2-4 MB Kernel data

1-2 MB initrd (mounted)

0.5-2 MB Compressed kernel

0.5-2 MB Compressed initrd

5-12 MB

Since 5 MB is probably the minimum amount of

memory required for any usable Linux system, these

memory requirements can only become a signi�cant

problem if using very large kernels or feature-laden

initrds, which are of little use on systems with tight

memory constraints.

Finally, the disk space requirements:

1 MB Compressed boot kernel

1 MB Compressed initrd

2 MB

This is hardly noticeable. Developers who fre-

quently change their boot kernel may wish to keep

an additional kernel build tree for this purpose. This

takes about 100-120 MB.

5.3 Case study: bootimg on i386

This section gives a rough overview of how bootimg

[17] currently loads a Linux kernel. Note that this is

still work in progress, and major changes are quite

probable. Bootimg consists of two parts: a user

space program that loads the necessary �les and

prepares a load map, and kernel code that moves

the memory pages to the right locations and starts

the new kernel.

1

2

5

7

bootimg

Kernel memory
Disk

Descr

Physical addresses of target pages

Pointers to source pages in user memory

4

Param
3

6

. . .

Figure 14: Bootimg: set up from user space.

As shown in �gure 14, the user space program �rst

loads the kernel image and, optionally, an initrd �le

into its address space (1). It registers the addresses

of these memory pages in an array of pointers (2).

Note that the data does not necessarily have to come

from a disk, but it may as well be loaded over the

network, or bootimg could even generate it on the

y, e.g. from object modules. Next, bootimg copies

the parameter block from the running kernel (3) and

adds the new boot command line and the initrd pa-

rameters (4). By copying the current parameter

block, all other values set by the BIOS, e.g. the

memory con�guration, are preserved. Along with

the pointer array to the source data, bootimg also

maintains a second array (5) that contains the tar-

get addresses in physical memory for all pages. Once

all this is done, bootimg sets up a descriptor con-

taining pointers to the two arrays and some addi-

tional information (6), and invokes the bootimg sys-

tem call (7).

As shown in �gure 15, the bootimg system call �rst

copies the source pages to kernel memory (1). This

is done mainly in order to check access permissions

and to ensure proper alignment of the pages, but it

also makes it easier to implement the crash dump

utility described in the next section. When copy-

ing, bootimg also updates the source pointers (2)

to point to the new pages in kernel memory.8 Since

the pages have been allocated at arbitrary loca-

tions, they must be moved to the right place before

the kernel can be started. This is done by a lit-

tle position-independent function that is copied to

its own memory page (3). This function moves all

pages to the location indicated in the target address

array (4). If a target address happens to coincide

with a page that is still needed, the function copies

the content of the target page �rst to a free page.

Note that this may also include the page contain-

ing the function itself. Once all pages have reached

their destination, the startup code of the new kernel

is called (6).

Two likely future changes are the addition of sup-

port for references to physical pages in the source

pointer array in order to support copying of data

that may change after the call to bootimg (i.e. the

kernel message bu�er), and a split of the bootimg

user-space program into a set of library functions

and a simple utility calling them, in order to make

it easier to use bootimg in other programs.

8It actually does this in two steps: �rst, it uses addresses

in the kernel address space. Then, immediately before re-

ordering the memory pages, it changes them to addresses in

physical memory. This way, the addresses are still available

if any operation fails before the reordering, and the pages can

be freed before the system call returns. This would be more

diÆcult if the addresses were already translated to physical

memory addresses, because the latter can not generally be

converted back to kernel address space.

2

before reordering

Descr

1

3

Kernel memory

after reordering

5

4

Physical addresses of target pages

Pointers to source pages in user memory
then to source pages in kernel memory

. . .

Figure 15: Bootimg: memory reordering in the ker-

nel.

5.4 Other interesting applications

Besides just booting Linux kernels from odd sources,

two other possible applications for such a mecha-

nism have been proposed recently.

LinuxBIOS [2] takes the reduction of boot loader

functionality to the logical extreme and simply puts

a Linux kernel in the Flash EPROM that normally

holds the PC BIOS. This kernel can then act as a

very feature-rich boot loader.

Another interesting use is the creation of crash

dumps. Many traditional Unix systems can write

the memory content to disk when a kernel panic

occurs. A crash dump can later be analyzed to de-

termine what has caused it. Since a kernel panic

should only occur in cases where the kernel has de-

tected a serious defect, it is not safe to assume that

the normal drivers can be used for writing that crash

dump. Even if the drivers still work, using them

may change the system state such that the problem

leading to the kernel panic can no longer be discov-

ered.

It is therefore desirable to use an subsystem that is

independent from the regular kernel for this task.

With a mechanism like bootimg, this is quite sim-

ple: a small kernel for taking the crash dump is

pre-loaded along with a suitable initial RAM disk,

and when a panic occurs, the pre-loaded pages are

checksummed (they may have been damaged as a

result of the problem leading to the kernel panic),

and the kernel is launched. It can then set up a new

clean environment and write the dump.

An implementation of such a crash dumper, based

on bootimg, can be found at [18].

6 Acknowledgements

Many people have contributed to LILO over the

years by reporting bugs and suggesting improve-

ments. Development has stalled in the last years,

but John Co�man is now carrying on the torch with

fresh energy.

The architectures for the initial RAM disk and for

bzImage are a joint work with Hans Lermen.

The design of pivot_root was strongly inuenced

by discussions in the linux-kernel mailing list. In

particular, comments from H. Peter Anvin, Linus

Torvalds, and Matthew Wilcox helped to shape the

current design, and Alexander Viro is currently re-

�ning the concept.

The basic idea for bootimg comes from an imple-

mentation for SVR4 written by Markus Wild in the

early nineties. The memory reordering algorithm

of bootimg was strongly inspired by FiPaBoL, de-

signed mainly by Otfried Cheong and Roger Gam-

mans, and implemented by the latter.

7 Conclusion

Table 1 shows the evolution of boot concepts in the

history of Linux. Items still under development are

shown in italics. Also, boot loaders for other archi-

tectures than i386 have been omitted.

The �rst boot loaders plainly got the kernel loaded,

without much convenience beyond this. The second

generation of boot loaders overcame the �le system

type constraints and added many useful features,

such as the boot command line or the ability to boot

other operating systems. Almost all boot loaders in

use today are of the second generation.

The ability to use arbitrary �le systems as the root

�le system evolved slowly since the beginning of

Linux. Since the introduction of pivot_root, a

completely generic solution is available.

Finally, the ability to load kernels from other sources

than oppy or hard disks is comparably recent.

Since the three current approaches to boot Linux

from Linux are already quite generic, convergence

will probably be reached soon.

As has been shown, the apparently simple act of

booting a Linux system is full of interesting prob-

lems. Modern Linux systems o�er a rich set of fea-

tures to handle those problems, and even more ex-

citing improvements continue to be developed.

References

[1] Almesberger, Werner. LILO User's guide,

ftp://metalab.unc.edu/pub/Linux/

system/boot/lilo/

[2] Minnich, Ron; Hendricks, James; Webster,

Dale. The Linux BIOS Home Page, http://

www.acl.lanl.gov/linuxbios/

[3] Anvin, H. Peter. SYSLINUX, http:

//www.kernel.org/pub/linux/utils/boot/

syslinux/

[4] Kuhlmann, Gero. Netboot, ftp:

//metalab.unc.edu/pub/Linux/system/

boot/ethernet/netboot-0.8.1.tar.gz

[5] Lermen, Hans. LOADLIN, ftp://metalab.

unc.edu/pub/Linux/system/boot/loaders/

lodlin16.tgz

[6] Cheong, Otfried. Arlo { Arm boot loader, ftp:

//ftp.calcaria.net/pub/arlo051.tgz

[7] Boleyn, Erich; et al. GNU GRUB, http://

www.gnu.org/software/grub/grub.html

[8] Almesberger, Werner; Co�man, John.

LILO { Generic boot loader for Linux,

ftp://metalab.unc.edu/pub/Linux/

system/boot/lilo/

The humble beginnings

1991 Linux boots stand-alone from oppy.

Shoelace is used to boot from Minix �le system on hard disk.

Beyond Minix

1992 LILO allows booting from (almost) arbitrary �le systems and of other operating systems.

BOOTLIN allows booting from DOS.

1994 LOADLIN replaces BOOTLIN.

SYSLINUX reads FAT (MS-DOS) oppies.

1995 GRUB, a modern �le system aware boot loader.

Root �le system abstraction

1991 Root �le system device can be set in kernel image.

1995 NFS root mounts root �le system from NFS server.

1996 Initial RAM disk support added to kernel.

change_root mechanism.

2000 pivot_root mechanism.

Union root mount.

Early freeing of initrd memory pages.

Kernel image abstraction

1996 Netboot boots from Ethernet, using TFTP.

1999 GRUB supports TFTP boot too.

2000 Linux boots Linux.

LinuxBIOS.

Table 1: Evolution of the boot process. (Work in progress is shown in italics.)

[9] Almesberger, Werner. LILO Technical

overview, ftp://metalab.unc.edu/pub/

Linux/system/boot/lilo/

[10] Brouwer, Andries. Large Disk HOWTO,

http://www.win.tue.nl/~aeb/linux/

Large-Disk.html

[11] Phoenix Technologies Ltd. Enhanced Disk

Drive Speci�cation Ver 1.1, http://www.

phoenix.com/products/specs-edd11.pdf

[12] Almesberger, Werner. ush { micro shell,

ftp://icaftp.epfl.ch/pub/people/

almesber/psion/ush-2.tar.gz

[13] Brouwer, Andries. util-linux: Miscellaneous

utilities for Linux, ftp://ftp.win.tue.nl/

pub/linux-local/utils/util-linux/

[14] Brouwer, Andries. man pages for Linux,

ftp://ftp.win.tue.nl/pub/linux-local/

manpages/

[15] Minnich, Ron. LOBOS: (Linux OS Boots OS)

Booting a kernel in 32-bit mode, http://www.

acl.lanl.gov/linuxbios/papers/lobos.ps

[16] Hendriks, Erik. Two Kernel Monte (Linux

loading Linux on x86), http://www.scyld.

com/software/monte.html

[17] Almesberger, Werner. bootimg ftp:

//icaftp.epfl.ch/pub/people/almesber/

misc/bootimg-current.tar.gz

[18] Mission Critical Linux. Kernel Core Dump,

http://www.missioncriticallinux.com/

technology/coredump/

