
Linux Network Tra�c Control � Implementation Overview

Werner Almesberger� EPFL ICA

Werner�Almesberger�epfl�ch

April ��� ����

Abstract

Linux o�ers a rich set of tra�c control functions�
This document gives an overview of the design of the
respective kernel code� describes its structure� and il�
lustrates the addition of new elements by describing
a new queuing discipline�

� Introduction

Recent Linux kernels o�er a wide variety of traf�
�c control functions� The kernel parts for tra�c
control� and several user�space programs to control
them have been implemented by Alexey Kuznetsov
�kuznet�ms��inr�ac�ru�� That work was inspired
by the concepts described in ��	� but it also covers the
mechanisms required for supporting the architecture
developed in the IETF
intserv� group ��	� and will
serve as the basis for supporting the more recent work
of
di�serv� �	� See also ��	 for further details on
how intserv and di�serv are related� This document
illustrates the underlying architecture and describes
how new tra�c control functions can be added to the
Linux kernel� The kernel version we used is ������

Figure � shows roughly how the kernel processes
data received from the network� and how it generates
new data to be sent on the network� incoming packets
are examined and then either directly forwarded to
the network �e�g� on a di�erent interface� if the ma�
chine is acting as a router or a bridge�� or they are
passed up to higher layers in the protocol stack �e�g�
to a transport protocol like UDP or TCP� for further
processing� Those higher layers may also generate
data on their own and hand it to the lower layers

for tasks like encapsulation� routing� and eventually
transmission�

Forwarding� includes the selection of the output
interface� the selection of the next hop� encapsulation�
etc� Once all this is done� packets are queued on the
respective output interface� This is the point where
tra�c control comes into play� Tra�c control can�
among other things� decide if packets are queued or
if they are dropped �e�g� if the queue has reached
some length limit� or if the tra�c exceeds some rate
limit�� it can decide in which order packets are sent
�e�g� to give priority to certain �ows�� it can delay the
sending of packets �e�g� to limit the rate of outbound
tra�c�� etc�

Once tra�c control has released a packet for send�
ing� the device driver picks it up and emits it on the
network�

Sections � to � give an overview and explain some
terminology� Sections � to � describe the elements
of tra�c control in the Linux kernel in more detail�
Section � describes a queuing discipline that has been
implemented by the author�

� Overview

The tra�c control code in the Linux kernel consists
of the following major conceptual components�

� queuing disciplines

� classes �within a queuing discipline�

� �lters

� policing

�

Input de-multiplexing Forwarding Output queuing

Upper layers (TCP, UDP, ...)
Traffic control

Figure �� Processing of network data�

Each network device has a queuing discipline asso�
ciated with it� which controls how packets enqueued
on that device are treated� A very simple queuing
discipline may just consist of a single queue� where
all packets are stored in the order in which they have
been enqueued� and which is emptied as fast as the
respective device can send� See �gure � for such a
queuing discipline without externally visible internal
structure�

Queuing discipline

Figure �� A simple queuing discipline without classes�

More elaborate queuing disciplines may use �lters
to distinguish among di�erent classes of packets and
process each class in a speci�c way� e�g� by giving one
class priority over other classes�

Figure shows an example of such a queuing dis�
cipline� Note that multiple �lters may map to the
same class�

Queuing disciplines and classes are intimately tied
together� the presence of classes and their semantics
are fundamental properties of the queuing discipline�
In contrast to that� �lters can be combined arbitrarily
with queuing disciplines and classes as long as the
queuing discipline has classes at all� But �exibility
doesn�t end yet � classes normally don�t take care of
storing their packets themselves� but they use another
queuing discipline to take care of that� That queuing
discipline can be arbitrarily chosen from the set of
available queuing disciplines� and it may well have
classes� which in turn use queuing disciplines� etc�

Figure � shows an example of such a stack� �rst�
there is a queuing discipline with two delay priori�
ties� Packets which are selected by the �lter go to
the high�priority class� while all other packets go to
the low�priority class� Whenever there are packets in
the high�priority queue� they are sent before packets
in the low�priority queue �e�g� the sch�prio queu�
ing discipline works this way�� In order to prevent

high�priority tra�c from starving low�priority tra�c�
we use a token bucket �lter �TBF�� which enforces a
rate of at most � Mbps� Finally� the queuing of low�
priority packets is done by a FIFO queuing discipline�
Note that there are better ways to accomplish what
we�ve done here� e�g� by using class�based queuing
�CBQ� ��	�

Packets are enqueued as follows� when the
enqueue function of a queuing discipline is called� it
runs one �lter after the other until one of them indi�
cates a match� It then queues the packet for the cor�
responding class� which usually means to invoke the
enqueue function of the queuing discipline
owned�
by that class� Packets which do not match any of the
�lters are typically attributed to some default class�

Typically� each class
owns� one queue� but it is in
principle also possible that several classes share the
same queue or even that a single queue is used by
all classes of the respective queuing discipline� Note
however that packets do not carry any explicit indica�
tion of which class they were attributed to� Queuing
disciplines that change per�class information when
dequeuing packets �e�g� CBQ� may therefore not
work properly if the
inner� queues are shared� un�
less they are able either to repeat the classi�cation
or to pass the classi�cation result from enqueue to
dequeue by some other means�

Usually when enqueuing packets� the correspond�
ing �ow�s� can be policed� e�g� by discarding packets
which exceed a certain rate�

We will not try to introduce new terminology
to distinguish among algorithms� their implementa�
tions� and instances of such elements� but rather use
the terms queuing discipline� class� and �lter through�
out most of this document� to refer to all three levels
of abstraction at the same time�

� Resources

Linux tra�c control is spread over a comparably large
number of �les� Note that all path names are relative
to the base directory of the respective component�

�

Filter

Filter

Filter

Class

Queuing discipline

Class Queuing discipline

Queuing discipline

Figure � A simple queuing discipline with multiple classes�

TBF, rate = 1 Mbps

FIFO

Queuing discipline with two delay priorities

Default

Filter "high"

"low"

Figure �� Combination of priority� TBF� and FIFO queuing disciplines�

e�g� for the Linux kernel this is �usr�src�linux��
for the tc program iproute��tc��

tc is a user�space program used to manipulate
individual tra�c control elements� Its source is
in the �le iproute��version�tar�gz� which can be
obtained from ftp	��linux�wauug�org�pub�net�

ip�routing��

The kernel code resides mainly in the directory
net�sched�� The interfaces between kernel traf�
�c control elements and user space programs us�
ing them are declared in include�linux�pkt�cls�

h and include�linux�pkt�sched�h� Declarations
used only inside the kernel and the de�nitions of some
inline functions can be found in include�net�pkt�

cls�h and include�net�pkt�sched�h�

The rtnetlink mechanism used for communica�
tion between tra�c control elements in user�space
and in the kernel is implemented in net�core�

rtnetlink�c and include�linux�rtnetlink�h� rt�
netlink is based on netlink� which can be found in
net�netlink� and include�linux�netlink�h�

The kernel source can be obtained from the usual
well�known places� e�g� from ftp	��ftp�kernel�

org�pub�linux�kernel�v�����

The example in section � is included in the ATM
on Linux distribution� which can be downloaded from
http	��icawww
�epfl�ch�linux�atm�dist�html�

The Di�erentiated Services on Linux project

�http	��icawww
�epfl�ch�linux�diffserv�� has
produced further examples for extensions of Linux
tra�c control and their use�

� Terminology

Unfortunately� the terminology used to describe traf�
�c control elements is far from consistent in litera�
ture� and there are some variations even within Linux
tra�c control� The purpose of this section is to help
to put things into context�

Figure � shows the architectural models and the
terminology used in the IETF groups
intserv� ��	
and
di�serv� ��� �	� and how elements of Linux tra�c
control are related to them� Note that classes play
an ambivalent role� because they determine the �nal
outcome of a classi�cation and they can also be part
of the mechanism that implements a certain queuing
or scheduling behaviour�

Table � summarizes the keywords used at the tc

command line� the �le names used in the kernel �in
net�sched��� and the �le names used in the source
of tc�

classifier
(BA)

Classifier

Mechanism

Class

C
la

ss
if

ie
r

Filter PoliceLinux kernel

Diffserv node

Intserv node

traffic
Diffserv

conditioner

traffic control

Policing

Classifier

Packet
scheduler

dropperMarker Shaper/

Meter

Flows

(Behaviour) aggregates

Metering Queuing/scheduling

Queuing discipline

Classification

Figure �� Relation of elements of the intserv and di�serv architecture to tra�c control in the Linux kernel�

�

Element tc keyword File name pre�x
Kernel tc

Queuing discipline qdisc sch� q�

Class class �sch�� �q��
Filter filter cls� f�

Table �� Keywords and �le names used for tra�c control elements�

� Queuing disciplines

Each queuing discipline provides the following
set of functions to control its operation �see
struct Qdisc�ops in include�net�pkt�sched�h��

enqueue enqueues a packet with the queuing disci�
pline� If the queuing discipline has classes� the
enqueue function �rst selects a class and then in�
vokes the enqueue function of the corresponding
queuing discipline for further enqueuing�

dequeue returns the next packet eligible for send�
ing� If the queuing discipline has no packets to
send �e�g� because the queue is empty or because
they�re not scheduled to be sent yet�� dequeue
returns NULL�

requeue puts a packet back into the queue after
dequeuing it with dequeue� This di�ers from
enqueue in that the packet should be queued
at exactly the place from which it was removed
by dequeue� and that it should not be included
in the statistics of cumulative tra�c that has
passed the queue� because that was already done
in the enqueue function�

drop drops one packet from the queue�

init initializes and con�gures the queuing discipline�

change changes the con�guration of a queuing disci�
pline�

reset returns the queuing discipline to its initial
state� All queues are cleared� timers are stopped�
etc� Also� the reset functions of all queuing dis�
ciplines associated with classes of this queuing
discipline are invoked�

destroy removes a queuing discipline� It removes
all classes and possibly also all �lters� cancels all
pending events and returns all resources held by
the queuing discipline �except for the data struc�
ture describing the queuing discipline itself��

dump returns diagnostic data used for maintenance�
Typically� the dump functions returns all su��
ciently important con�guration and state vari�
ables�

For all these functions� queuing disciplines are usu�
ally referenced by a pointer to the corresponding
struct Qdisc�

When a packet is enqueued on an interface �dev�
queue�xmit in net�core�dev�c�� the enqueue func�
tion of the device�s queuing discipline ��eld qdisc of
struct device in include�linux�netdevice�c� is
invoked� Afterwards� dev�queue�xmit calls qdisc�
wakeup in include�net�pkt�sched�h on that device
to try sending the packet that was just enqueued�

qdisc�wakeup immediately calls qdisc�restart

in net�sched�sch�generic�c� which is the main
function to poll queuing disciplines and to send pack�
ets� qdisc�restart�rst tries to obtain a packet from
the queuing discipline of the device� and if it succeeds�
it invokes the device�s hard�start�xmit function to
actually send the packet� If sending fails for some rea�
son� the packet is returned to the queuing discipline
via its requeue function�

qdisc�wakeup can also be invoked by a queuing
discipline when that queuing discipline notices that
a packet may be due for sending� e�g� on expiration
of a timer� TBF is an example of such a queuing
discipline� qdisc�restart is also called via qdisc�

run�queues from net�bh in net�core�dev�c� net�
bh is the
bottom�half� handler of the networking
stack and is executed whenever packets have been
queued up for further processing�

Figure � illustrates the procedure� For simplicity�
calls made by the queuing discipline �e�g� for classi�
�cation� are not shown�

Note that queuing disciplines never make direct
calls to delivery functions� Instead� they have to wait
until they are polled�

If a queuing discipline is compiled into the the ker�
nel� it should be registered by pktsched�init in net�
sched�sch�api�c� Alternatively� is can also be regis�
tered from some other place using register�qdisc�
e�g� from the init�module function if the queuing

�

qdisc_restart

qdisc_wakeup

_dequeueqdisc

hard_start_xmit

_enqueueqdisc

dev_queue_xmit

net_bh

Timer

qdisc_run_queues

Figure �� Functions called when enqueuing and send�
ing packets�

discipline is compiled as a module�

When creating or changing an instance of
a queuing discipline� a vector of options �type
struct rtattr �� declared in include�linux�

rtnetlink�h� is passed to the init function� Each
option is encoded with its type� the length of the
value� and the value �i�e� zero or more data bytes��
Option types and the data structures used for values
are declared in include�linux�pkt�sched�h� The
option vector is parsed by calling rtattr�parse�
which returns an array of pointers to the individual
elements� indexed by the option type� The length and
content of an option can be accessed via the macros
RTA�PAYLOAD and RTA�DATA� respectively�

Option vectors are passed between user�space pro�
grams and the kernel using the rtnetlink mechanism�
Explaining rtnetlink and the underlying netlink is be�
yond the scope of this paper� The location of the
respective source �les is described in section �

Instances of queuing disciplines are identi�ed by
��bit numbers� which are split into a major and a
minor number� The usual notation is major	minor�
For queuing disciplines� the minor number is always
zero� Note that these major and minor numbers are
not related to the numbers used for device special
�les�

� Classes

Classes can be identi�ed in two ways� ��� by the class
ID� which is assigned by the user� and ��� by the in�
ternal ID� which is assigned by the queuing discipline�
The latter has to be unique within a given queuing
discipline and may be an index� a pointer� etc� Note
that the value � is special and means
not found�
when returned by get� The class ID is of type u���
while the internal ID is of type unsigned long� In�
side the kernel� the usual way to refer to a class is by
its internal ID� Only get and change use the class ID
instead�

Note that multiple class IDs may map to the same
internal class ID� In this case� the class ID conveys
additional information from the classi�er to the queu�
ing discipline or class�

Class IDs are structured like queuing discipline
IDs� with the major number corresponding to their
instance of the queuing discipline� and the minor
number identifying the class within that instance�

Queuing disciplines with classes provide the
following set of functions to manipulate classes
�see struct Qdisc�class�ops in include�net�

pkt�sched�h��

graft attaches a new queuing discipline to a class
and returns the previously used queuing disci�
pline�

leaf returns the queuing discipline of a class�

get looks up a class by its class ID and returns the
internal ID� If the class maintains a usage count�
get should increment it�

put is invoked whenever a class that was previously
referenced with get is dereferenced� If the class
maintains a usage count� put should decrement
it� If the usage count reaches zero� put may re�
move the class�

change changes the properties of a class� change is
also used to create new classes� where applica�
ble � some queuing disciplines have a constant
number of classes which are created when the
queuing discipline is initialized�

delete handles requests to delete a class� It checks
if the class is not in use� and de�activates and
removes it in this case�

walk iterates over all classes of a queuing discipline
and invokes a callback function for each of them�
This is used to obtain diagnostic data for all
classes of a queuing discipline�

�

tcf�chain returns a pointer to the anchor of the list
of �lters associated with a class� This is used to
manipulate the �lter list�

bind�tcf binds an instance of a �lter to the class�
bind�tcf is usually identical to get� except
when the queuing discipline needs to be able to
explicitly refuse class deletion� �E�g� sch�cbq re�
fuses to delete classes while they are referenced
by �lters��

unbind�tcf removes an instance of a �lter from the
class� unbind�tcf is usually identical to put�

dump�class returns diagnostic data� like dump does
for queuing disciplines�

Classes are selected in the enqueue function
of the queuing discipline usually by invoking tc�

classify in include�net�pkt�cls�h� which returns
a struct tcf�result �in include�net�pkt�cls�h�
containing the class ID �classid� and possibly also
the internal ID �class�� see section �� The re�
turn value of tc�classify is either �� �TC�POLICE�
UNSPEC� or the policing decision returned by the �l�
ter �see section ��� The return values of tc�classify
are declared in include�linux�pkt�cls�h�

There is also a shortcut for classi�cation of lo�
cally generated tra�c� if skb��priority contains
the ID of a class of the current queuing discipline�
that class is used and no further classi�cation is
attempted� skb��priority �struct sk�buff in
include�linux�skbuff�h� is set to sk��priority

�struct sock in include�net�sock�h� when locally
generating a packet� sk��priority can be set with
the SO�PRIORITY socket option �sock�setsockopt in
net�core�sock�c�� This type of classi�cation can
be useful for implementing functionality like the one
provided by Arequipa ��	�

Note that kernels up to at least ���� limit the
value that can be set with SO�PRIORITY to the range
� � � � �� so that this shortcut classi�cation does not
work� However� all queuing disciplines support it�
Also note that skb��priority can contain other pri�
ority values� e�g� the priority obtained from the TOS
byte of the IPv� header� All such values are below
the smallest valid class number� �����

After selecting the class� the enqueue function of
the respective inner queuing discipline is invoked�
The way how this queuing discipline is stored in the
data structure�s� associated with the class can vary
among queuing discipline implementations�

The option vector passed to the change function
is of the same structure as the vectors passed to

the init functions of queuing disciplines� The cor�
responding declarations are also in include�linux�

pkt�sched�h�

� Filters

Filters are used by a queuing discipline to assign in�
coming packets to one of its classes� This happens
during the enqueue operation of the queuing disci�
pline�

Element handle=X

Element handle=Y

Qdisc/class

Filter prio=1 Filter prio=2

Figure �� Structure of �lters� with a list of elements
belonging to the �rst �lter� and no internal structure
for the second �lter�

Filters are kept in �lter lists which can be main�
tained per queuing discipline or per class� depend�
ing on the design of the queuing discipline� Fil�
ter lists are ordered by priority� in ascending order�
Furthermore� the entries are keyed by the protocol
for which they apply� Those protocol numbers are
also used in skb��protocol and they are de�ned in
include�linux�if�ether�h� Filters for the same
protocol on the same �lter list must have di�erent
priorities�

A �lter may also have an internal structure� it
may control internal elements� which are then refer�
enced by ��bit handles� These handles are similar to
class IDs� but they are not split into major and minor
numbers� Handle � always refers to the �lter itself�
Like classes� also �lters have internal IDs� which are
obtained with the get function� The internal organi�
zation of a �lter can be arbitrary� Figure � shows a
�lter with a list of internal elements�

Figure � shows the order in which �lters and their
elements can be examined� A linked list that is pro�
cessed sequentially is of course only one of many pos�
sible internal structures of a �lter�

�

Filter Filter

E

E

E

E

No match

Match

UNSPECOK

Figure �� Looking for a match�

Filters are controlled via the following functions
�see struct tcf�proto�ops in include�net�pkt�

cls�h��

classify performs the classi�cation and returns one
of the TC�POLICE�� � � values described in section
�� If the result is not TC�POLICE�UNSPEC� it also
returns the selected class ID and optionally also
the internal class ID in the struct tcf�result

pointed to by res� If the internal class ID is
omitted� the value zero must be stored in res��

class�

init initializes the �lter�

destroy is invoked to remove a �lter� Also the
queuing disciplines sch�cbq and sch�atm use
destroy to remove stale �lters when deleting
classes� If the �lter or any of its elements were
registered with classes� these registrations are
canceled by calling unbind�tcf�

get looks up a �lter element by its handle and re�
turns the internal �lter ID�

put is invoked when a �lter element previously ref�
erenced with get is no longer used�

change con�gures a new �lter or changes the proper�
ties of an existing �lter� Con�guration parame�
ters are passed with the same mechanism as used

for queuing disciplines and classes� change reg�
isters the addition of a new �lter or �lter element
to a class by calling bind�tcf�

delete deletes an element of a �lter� To delete the
entire �lter� destroy has to be used� This dis�
tinction is transparent to the user and is made
in net�sched�cls�api	tc�ctl�tfilter� If the
�lter element was registered with a class� that
registration is canceled by calling unbind�tcf�

walk iterates over all elements of a �lter and invokes
a callback function for each of them� This is used
to obtain diagnostic data�

dump returns diagnostic data for a �lter or one of its
elements�

Note that the code for the RSVP �lters is in
cls�rsvp�h� cls�rsvp�c and cls�rsvp�c only
contain the right set of includes and set some pa�
rameters �mainly RSVP�DST�LEN�� which control the
type of �lter generated from cls�rsvp�h�

filter_classify

Q
ue

ui
ng

 d
is

ci
pl

in
e

x:0

Se
ar

ch
0

tcf_result

x:y

class

classid

x:a

x:b

x:y

...

Packet content

Classes

skb

Figure �� Generic �lter�

Filters vary in the scope of packets their instances
can classify� When using the cls�fw and cls�route

�lters� one instance per queuing discipline can classify
packets for all classes� Those �lters take the class
ID from the packet descriptor� where it was stored
before by some other entity in the protocol stack�
e�g� cls�fw uses the marking functionality of the
�rewall code� We call such �lters generic� They are
illustrated in �gure ��

�

filter_classify
Q

ue
ui

ng
 d

is
ci

pl
in

e

x:0

tcf_result

x:y
class
classid

Filter can use all packet information

x:a

x:b

x:y

...

Classes

Packet content

Fi
lte

rs

Se
ar

ch
skb

Figure ��� Speci�c �lter� with a pointer to the class
used as the internal class ID�

The other type of �lters �cls�rsvp and cls�u���
needs one or more instances of the �lter or its inter�
nal elements per class� We call such �lters speci�c�
Multiple instances of such a �lter �or its elements� on
the same �lter list �e�g� for the same class� are dis�
tinguished by an internal �lter ID� which is similar
to the internal ID used for classes� However� unlike
classes� �lters have no
�lter ID�� Instead� they are
identi�ed by the queuing discipline or class for which
they are registered� and their priority among the �l�
ters there�

Because speci�c �lters have at least one instance
or element per class� they can of course store the
internal ID of that class and provide it as a result
of classi�cation� This then allows quick retrieval of
class information by the queuing discipline� Figure
�� illustrates this scenario� where a pointer to the
class structure is used as the internal ID� Unfortu�
nately� generic �lters have no means to provide this
information� Therefore� they set the class �eld in
struct tcf�result to zero and leave the lookup op�
eration to the queuing discipline�

Starting with kernel version ������ also the generic
�lters cls�fw cls�route can become speci�c �l�

ters� This con�guration change happens automati�
cally when explicitly binding classes to them�

� Policing

The purpose of policing is to ensure that tra�c does
not exceed certain bounds� For simplicity� we will
assume a broad de�nition of policing and consider it
to comprise all kinds of tra�c control actions that
depend in some way on the tra�c volume�

We consider four types of policing mechanisms� ���
policing decisions by �lters� ��� refusal to enqueue
a packet� �� dropping of a packet from an
inner�
queuing discipline� and ��� dropping of a packet when
enqueuing a new one� Figures �� to �� illustrate the
four mechanisms�

The �rst type of actions are decisions taken by
�lters ��gure ���� The classify function of a �lter
can return three types of values to indicate a policy
decision �the values are declared in include�linux�

pkt�cls�h�

TC�POLICE�OK No special treatment requested�

TC�POLICE�RECLASSIFY Packet was selected by �lter
but it exceeds certain bounds and should be re�
classi�ed �see below��

TC�POLICE�SHOT Packet was selected by �lter and
found to violate the bounds such that it should
be discarded�

Currently� the �lters cls�rsvp� cls�rsvp� and
cls�u�� support policing� The policing informa�
tion is returned via tc�classify �in include�net�

pkt�cls�h� to the enqueue function of the queu�
ing discipline� It is then up to the queuing disci�
pline to take an appropriate action� The queuing
disciplines sch�cbq and sch�atm handle TC�POLICE�
RECLASSIFY and TC�POLICE�SHOT� The sch�prio

queuing discipline ignores any policing information
returned by tc�classify�

Filters can use the function tcf�police �in
net�sched�police�c� to determine if the �ow
they select conforms to a token bucket� The
bucket parameters �declared in struct tc�police

in include�linux�pkt�cls�h and later on stored
in struct tcf�police in include�net�pkt�sched�

h� are roughly the same as for TBF� maximum
packet size �mtu�� average rate �rate�� peak rate
�peakrate�� and bucket size �burst�� The �eld
action contains the policy decision code returned
when accepting the packet would exceed the limits� If

�

filter2_classify

filter1_classify

if OK

if UNSPEC,RECLASSIFY

UNSPEC,SHOTif

high_enqueue

low_enqueueouter_enqueue

tc_classify

UNSPEC

OK,RECLASSIFY,SHOT

UNSPEC,OK,RECLASSIFY,SHOT

kfree_skb

discipline
Queuing

Filter(s)

Figure ��� Policing when enqueuing� decision taken by �lter�

the packet can be accepted� tcf�police updates the
meter and returns the decision code stored in result�

If no matching �lter was found� tc�classify re�
turns TC�POLICE�UNSPEC� In this case� a queuing
discipline will typically either discard the packet or
treat it with low priority�

Sometimes� it is desirable to police tra�c with re�
spect to more than a single token bucket� e�g� to par�
tition tra�c into
low��
high�� and
excess� packets�
In order to build such con�gurations� multiple polic�
ing functions need to be consulted� To accomplish
this� tcf�police returns TC�POLICE�UNSPEC� upon
which the �lter proceeds with the next element� or�
if the current �lter has no more eligible elements� the
next �lter is invoked� An example of such a con�gu�
ration is given in ���	�

Figure �� illustrates how the matching process
changes when policing is involved�

The second type of policing occurs when a queu�
ing discipline fails to enqueue a packet ��gure ���
In this case� it normally simply discards the packet
�i�e� by calling kfree�skb�� Some queuing disciplines
also provide more sophisticated feedback to the call�
ing queuing discipline and give it a second chance for
enqueuing the packet� if the reshape�fail callback
function has been set �in struct Qdisc�� the
inner�
queuing discipline may invoke it instead to allow the

outer� queuing discipline to select a di�erent class�
If reshape�fail is not set or if it returns a non�
zero value� the packet must be discarded� Currently�
only sch�cbq provides a reshape�fail function�

sch�fifo and sch�tbf make calls to reshape�fail�
if available�

The third policing mechanism is applied if a queu�
ing discipline decides to drop a packet from an
in�
ner� queuing discipline after that packet was en�
queued� e�g� in order to create space for packets of a
more important class ��gure ���� This is done using
the drop function� The cbq�dequeue�prio function
of sch�cbq uses this via cbq�under�limit to remove
packets from classes which are over limit�

Also the fourth mechanism ��gure ��� discards
packets that have already been successfully enqueued�
if the enqueue function of a queuing discipline con�
siders a new packet to be more important than some
older one� it can discard the old packet and enqueue
the new one instead� It indicates this to the caller by
returning zero�

	 The sch atm queuing disci

pline

As an example of how new tra�c control elements
can be added� we examine the ATM queuing disci�
pline in more detail� It is used to re�direct �ows from
the default path �e�g� through a given interface� to
ATM VCs� Each �ow can have its own ATM VC� but
multiple �ows can also share the same VC� Figure ��
illustrates the structure of this queuing discipline�

While its classi�cation and queuing part is fairly
generic� the ATM queuing discipline di�ers from

��

Filter Class Queuing discipline

ATM VC

ATM VC

ATM queuing discipline

Default

Filter Class Queuing discipline

Filter Class Queuing discipline

Queuing discipline

Figure ��� The ATM queuing discipline�

Add

Filter Filter

E

E

E

E

OK or policing action UNSPEC

Policer

Rate OK?

result action

Y N
Match,

No match or
UNSPEC

policing action
OK, or

Figure ��� Looking for a match� with policing�

other queuing disciplines in that packets enqueued
on it may leave via other paths than through
the dequeue function or being dropped� whenever
dequeue is called� it �rst checks all inner queuing dis�
ciplines for packets to send� and sends them over the
respective ATM VCs� After that� it returns what�
ever it gets from the default queue� which receives
the packets that don�t get attributed to any of the
classes�

In order to prevent VCs from being removed while

inner_enqueue

outer_enqueue outer_reclassify

Successfully enqueued

"Outer" queuing discipline

"Inner" queuing discipline

kfree_skb

!= NULL
sch->reshape_failif

if sch->reshape_fail
== NULL

Figure �� Policing when enqueuing� decision taken
by
inner� queuing discipline�

the queuing discipline is still using them� the refer�
ence count of the corresponding socket is increased
when attaching a VC to a class of the ATM queu�
ing discipline� This happens in the function sockfd�

lookup in net�socket�c which atm�tc�change calls
to translate the socket descriptor number to a pointer
to the socket structure� When the class is removed�
it returns the socket using sockfd�put� which then
decrements the reference count� This pair of func�
tions performs roughly the equivalent of fdopen and
close�

The ATM queuing discipline supports the polic�
ing responses TC�POLICE�SHOT and TC�POLICE�

RECLASSIFY� The latter can be handled in two di�er�
ent ways� ��� by assigning the packet to a new class
�as con�gured by the user�� or ��� by setting the cell
loss priority bit in outgoing ATM cells�

��

outer_enqueue

inner_enqueue

outer_...

inner_drop

later ...

"Outer" queuing discipline

"Inner" queuing discipline

Figure ��� Policing after enqueuing� decision taken
by
outer� queuing discipline�

outer_enqueue

inner_enqueue inner_enqueue

outer_enqueue

"Outer" queuing discipline

later ...

"Inner" queuing discipline

Figure ��� Older packet is discarded to make room
for new packet�

The code of the ATM queuing discipline is in
net�sched�sch�atm�c� In addition to that �le�
include�linux�pkt�sched�h contains the option
types �pre�x TCA�ATM��� and net�sched�sch�api�c

contains the initialization� Furthermore� the usual
changes had to be made to net�sched�Config�in

and net�sched�Makefile to include the new queu�
ing discipline in the con�guration and build process�

The use of the ATM queuing discipline is described
in the �le atm�extra�tc�README in the ATM on
Linux distribution�

�� Conclusion

Linux tra�c control consists of a large variety of ele�
ments� which interact with each other in many ways�
The modular approach chosen results in a very versa�

tile design that can be readily applied to most current
tra�c control tasks� and which can be easily extended
to accommodate less typical applications� such as the
link�layer selection implemented in the ATM queuing
discipline� It also forms the basis for the Linux imple�
mentation of Di�erentiated Services� which unify and
advance many of the existing tra�c control concepts�

We have described queuing disciplines� classes� �l�
ters� and elements within �lters� we have illustrated
the most important interactions between these com�
ponents� and we have brie�y introduced the design of
a new queuing discipline� We hope this information
to be useful for people aiming to understand the in�
ner workings of Linux tra�c control� and in particular
also to implementors of new tra�c control functions�

�� Acknowledgements

The author would like to thank Jamal Hadi Salim
for very helpful discussions and suggestions on this
paper� and Alexey Kuznetsov for a critical review and
for explaining many of his design decisions and the
deeper details of tra�c control�

References

��	 Clark� David D�� Shenker� Scott� Zhang� Lixia�
Supporting Real�Time Applications in an Inte�
grated Services Packet Network� Architecture
and Mechanism� Proceedings of SigComm����
Baltimore� MD� August ����� http	��ana�www�
lcs�mit�edu�anaweb�ps�papers�csz�ps

��	 IETF� Integrated Services �intserv� working
group� http	��www�ietf�org�html�charters�
intserv�charter�html

�	 IETF� Di�erentiated Services �di�serv� working
group� http	��www�ietf�org�html�charters�
diffserv�charter�html

��	 Bernet� Yoram� Yavatkar� Raj� Ford� Pe�
ter� Baker� Fred� Zhang� Lixia� Nichols�
Kathleen� Speer� Michael� Braden� Bob� In�
teroperation of RSVP�Int�Serv and Di��Serv
Networks �work in progress�� Internet Draft
draft�ietf�diffserv�rsvp����txt� Febru�
ary �����

��	 Floyd� Sally� Jacobson� Van� Link�sharing and
Resource Management Models for Packet Net�
works� IEEE�ACMTransactions on Networking�
Vol� No� �� pp� ������ August �����

��

��	 RFC����� Braden� Bob �Ed��� Zhang� Lixia�
Berson� Steve� Herzog� Shai� Jamin� Sugih� Re�
source ReSerVation Protocol �RSVP� � Ver�
sion 	 Functional Speci�cation� IETF� Septem�
ber �����

��	 RFC����� Nichols� Kathleen� Blake� Steven�
Baker� Fred� Black� David� De�nition of the Dif�
ferentiated Services Field �DS Field� in the IPv

and IPv� Headers� IETF� December �����

��	 RFC����� Blake� Steven� Black� David� Carlson�
Mark� Davies� Elwyn� Wang� Zheng� Weiss� Wal�
ter� An Architecture for Di�erentiated Services�
IETF� December �����

��	 RFC����� Almesberger� Werner� Le Boudec�
Jean�Yves� Oechslin� Philippe� Application RE�
Quested IP over ATM �AREQUIPA�� IETF�
July �����

���	 Almesberger� Werner� Hadi Salim� Jamal�
Kuznetsov� Alexey� Di�erentiated Services
on Linux �work in progress�� Internet Draft
draft�almesberger�wajhak�diffserv�linux��
�

txt� May �����

�

